In [24], we studied the singularities of solutions of Monge-Ampère equations of hyperbolic type. Then we saw that the singularities of solutions do not coincide with the singularities of solution surfaces. In this note we first study the singularities of solution surfaces. Next, as the applications, we consider the singularities of surfaces with negative Gaussian curvature. Our problems are as follows: 1) What kinds of singularities may appear?, and 2) How can we extend the surfaces beyond the singularities?
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p161bwm, author = {Tsuji, Mikio}, title = {Monge-Amp\`ere equations and surfaces with negative Gaussian curvature}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {161-170}, zbl = {0890.35093}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p161bwm} }
Tsuji, Mikio. Monge-Ampère equations and surfaces with negative Gaussian curvature. Banach Center Publications, Tome 38 (1997) pp. 161-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p161bwm/
[000] [1] M.-H. Amsler, Des surfaces à courbure constante négative dans l'espace à trois dimensions et de leurs singularités , Math. Ann. 130 (1955), 234-256. | Zbl 0068.35102
[001] [2] R. Courant and D. Hilbert, Method of Mathematical Physics , vol. 2, Interscience, New York, 1962. | Zbl 0099.29504
[002] 3] G. Darboux, Leçon sur la théorie générale des surfaces , tome 3, Gauthier-Villars, Paris, 1894. | Zbl 53.0659.02
[003] [4] N. V. Efimov, Generation of singularities on surfaces of negative curvature , Mat. Sb. 64 (1964), 286-320.
[004] [5] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre , tome 1, Hermann, Paris, 1896. | Zbl 48.0537.05
[005] [6] E. Goursat, Cours d'analyse mathématique , tome 3, Gauthier-Villars, Paris, 1927. | Zbl 53.0180.05
[006] [7] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques , Hermann, Paris, 1932. | Zbl 58.0519.16
[007] [8] D. Hilbert, Über Flächen von constanter Gausscher Krümmung , Trans. Amer. Math. Soc. 2 (1901), 87-99.
[008] [9] E. Holmgen, Sur les surfaces à courbure constante négative , C. R. Acad. Sci. Paris 134 (1902), 740-743. | Zbl 33.0643.01
[009] [10] S. Izumiya, Geometric singularities for Hamilton-Jacobi equation , Adv. Stud. Pure Math. 22 (1993), 89-100. | Zbl 0837.35090
[010] [11] S. Izumiya, Characteristic vector fields for first order partial differential equations , preprint. | Zbl 0942.35042
[011] [12] S. Izumiya and G. T. Kossioris, Semi-local classification of geometric singuarities for Hamilton-Jacobi equations , J. Differential Equations 118 (1995), 166-193. | Zbl 0837.35091
[012] [13] M. Kossowski, Local existence of multivalued solutions to analytic symplectic Monge- Ampère equations , Indiana Univ. Math. J. 40 (1991), 123-148. | Zbl 0718.53043
[013] [14] H. Lewy, Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen , Math. Ann. 98 (1928), 179-191. | Zbl 53.0473.15
[014] [15] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II , Trans. Amer. Math. Soc. 37 (1934), 417-434; 41 (1937), 365-374. | Zbl 61.0513.02
[015] [16] V. V. Lychagin, Contact geometry and non-linear second order differential equations , Russian Math. Surveys 34 (1979), 149-180. | Zbl 0427.58002
[016] [17] T. K. Milnor, Efimov's theorem about complete immersed surfaces of negative curvature , Adv. Math. 8 (1972), 474-543. | Zbl 0236.53055
[017] [18] T. Morimoto, La géométrie des équations de Monge-Ampère , C. R. Acad. Sci. Paris Sér. I Math. 289 (1979), 25-28. | Zbl 0425.35023
[018] [19] S. Nakane, Formation of singularities for Hamilton-Jacobi equations in several space variables , J. Math. Soc. Japan 43 (1991), 89-100. | Zbl 0743.35043
[019] [20] S. Nakane, Formation of shocks for a single conservation law , SIAM J. Math. Anal. 19 (1988), 1391-1408. | Zbl 0681.35057
[020] [21] A. Pliś, Characteristics of nonlinear partial differential equations , Bull. Acad. Polon. Sci. Cl. III 2 (1954), 419-422.
[021] [22] M. Tsuji, Formation of singularities for Hamilton-Jacobi equation II , J. Math. Kyoto Univ. 26 (1986), 299-308. | Zbl 0655.35009
[022] [23] M. Tsuji, Prolongation of classical solutions and singularities of generalized solutions , Ann. Inst. H. Poincarè Anal. Non Linéaire 7 (1990), 505-523. | Zbl 0722.35025
[023] [24] M. Tsuji, Formation of singularities for Monge-Ampère equations , Bull. Sci. Math. 119 (1995), 433-457. | Zbl 0845.35005
[024] [25] H. Whitney, On singularities of mappings of Euclidean spaces, I , Ann. of Math. (2) 62 (1955), 374-410. | Zbl 0068.37101