Singular Moment Maps and Quaternionic Geometry
Swann, Andrew
Banach Center Publications, Tome 38 (1997), p. 143-153 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208657
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p143bwm,
     author = {Swann, Andrew},
     title = {Singular Moment Maps and Quaternionic Geometry},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {143-153},
     zbl = {0891.53031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p143bwm}
}
Swann, Andrew. Singular Moment Maps and Quaternionic Geometry. Banach Center Publications, Tome 38 (1997) pp. 143-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p143bwm/

[000] [AH] M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of magnetic monopoles , Princeton University Press, Princeton, 1988. | Zbl 0671.53001

[001] [Ba] F. Battaglia, S1-quotients of quaternion-Kähler manifolds , Proc. Amer. Math. Soc. (to appear).

[002] [Bea] A. Beauville, Variétés Kähleriennes dont la 1ère classe de Chern est nulle , J. Differential Geom. 18 (1983), 755-782. | Zbl 0537.53056

[003] [Ber] M. Berger, Sur les groupes d'holonomie des variétés à connexion affines et des variétés riemanniennes , Bull. Soc. Math. France 83 (1955), 279-330. | Zbl 0068.36002

[004] [Ca1] E. Calabi, Métriques Kählériennes et Fibrés Holomorphes , Ann. Scient. École Norm. Sup. (4) 12 (1979), 269-294. | Zbl 0431.53056

[005] [Ca2] E. Calabi, Isometric Families of Kähler Structures , in: The Chern Symposium, 1979, W.-Y. Hsiang et al. (eds.), Springer-Verlag, 1980, 23-39.

[006] [Da] A. S. Dancer, Dihedral singularities and gravitational instantons , J. Geom. Phys. 12 (1993) 77-91. | Zbl 0851.53029

[007] [DS1] A. S. Dancer and A. F. Swann, Hyperkähler metrics associated to compact Lie groups , Math. Proc. Cambridge Philos. Soc. (to appear). | Zbl 0867.53056

[008] [DS2] A. S. Dancer and A. F. Swann, The structure of quaternionic Kähler quotients , preprint, 1995.

[009] [Ga] K. Galicki, A generalization of the momentum mapping construction for quaternionic Kähler manifolds , Comm. Math. Phys. 108 (1987), 117-138. | Zbl 0608.53058

[010] [GL] K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds , Math. Ann. 282 (1988), 1-21. | Zbl 0628.53060

[011] [GS] V. Guillemin and S. Sternberg, A normal form for the moment map , In: Differential geometric methods in mathematical physics, S. Sternberg (ed.), Reidel Publishing Company, Dordrecht, 1984, 161-175.

[012] [H1] N. J. Hitchin, Polygons and Gravitons , Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476. | Zbl 0399.53021

[013] [H2] N. J. Hitchin, Kählerian twistor spaces , Proc. London Math. Soc. (3) 43 (1981), 133-150.

[014] [H3] N. J. Hitchin, The self-duality equations on a Riemann surface , Proc. London Math. Soc. (3) 55 (1987), 59-126. | Zbl 0634.53045

[015] [HKLR] N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry , Comm. Math. Phys. 108 (1987), 535-589. | Zbl 0612.53043

[016] [J1] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I , J. Differential Geom. (to appear).

[017] [J2] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II , J. Differential Geom. (to appear).

[018] [J3] D. D. Joyce, Compact Riemannian 8-manifolds with holonomy Spin(7), preprint, 1995.

[019] [KS] P. Z. Kobak and A. F. Swann, Classical nilpotent orbits as hyperKähler quotients , Internat. J. Math. 7 (1996), 193-210. | Zbl 0858.53042

[020] [K1] P. B. Kronheimer, A hyperkähler structure on the cotangent bundle of a complex Lie group , MSRI preprint, 1988.

[021] [K2] P. B. Kronheimer, The construction of ale spaces as hyperKähler quotients , J. Differential Geom. 29 (1989), 665-683. | Zbl 0671.53045

[022] [K3] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons , J. Differential Geom. 29 (1989), 685-697. | Zbl 0671.53046

[023] [K4] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety , J. Differential Geom. 32 (1990), 473-490. | Zbl 0725.58007

[024] [Le] C. R. LeBrun, On complete quaternionic-Kähler manifolds , Duke Math. J. 63 (1991), 723-743. | Zbl 0764.53045

[025] [LS] C. R. LeBrun and S. M. Salamon, Strong rigidity of positive quaternion-Kähler manifolds , Invent. Math. 118 (1994), 109-132. | Zbl 0815.53078

[026] [Na] H. Nakajima, Instantons on ale spaces, quiver varieties and Kac-Moody algebras , Duke Math. J. 76 (1994), 365-416. | Zbl 0826.17026

[027] [Pa] D. N. Page, A physical picture of the K3 gravitational instanton , Phys. Lett. 80B (1978), 55-57.

[028] [PS] Y. S. Poon and S. M. Salamon, Eight-dimensional quaternionic Kähler manifolds with positive scalar curvature , J. Differential Geom. 33 (1991), 363-378. | Zbl 0733.53035

[029] [Sa] S. M. Salamon, Quaternionic Kähler manifolds , Invent. Math. 67 (1982), 143-171. | Zbl 0486.53048

[030] [SL] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction , Ann. of Math. (2) 134 (1991), 375-422. | Zbl 0759.58019

[031] [Sw] A. F. Swann, HyperKähler and quaternionic Kähler geometry , Math. Ann. 289 (1991), 421-450. | Zbl 0711.53051

[032] [Wi] J. A. Wiśniewski, On Fano manifolds of large index , Manuscripta Math. 70 (1991), 145-152. | Zbl 0726.14028

[033] [Wo] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces , J. Math. Mech. 14 (1965), 1033-1047. | Zbl 0141.38202

[034] [Yau] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I , Comm. Pure Appl. Math. 31 (1978), 339-411. | Zbl 0369.53059