A note on singularities at infinity of complex polynomials
Parusiński, Adam
Banach Center Publications, Tome 38 (1997), p. 131-141 / Harvested from The Polish Digital Mathematics Library

Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family f¯ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the C-triviality of f. If the support of sheaf of vanishing cycles of f¯ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208656
@article{bwmeta1.element.bwnjournal-article-bcpv39z1p131bwm,
     author = {Parusi\'nski, Adam},
     title = {A note on singularities at infinity of complex polynomials},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {131-141},
     zbl = {0882.32018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p131bwm}
}
Parusiński, Adam. A note on singularities at infinity of complex polynomials. Banach Center Publications, Tome 38 (1997) pp. 131-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv39z1p131bwm/

[000] [BMM] J. Briançon, Ph. Maisonobe, M. Merle, Localization de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), 531-550.

[001] [Br] J. L. Brylinski, (Co)-Homologie d'intersection et faisceaux pervers, Seminaire Bourbaki 585 (1981-82), Astérisque 92-93 (1982), 129-157.

[002] [BDK] J. L. Brylinski, A. Dubson, M. Kashiwara, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 129-132. | Zbl 0492.58021

[003] [Di] A. Dimca, Singularities and Topology of Hypersurfaces, Universitex, Springer, New York, Berlin, Heidelberg, 1992. | Zbl 0753.57001

[004] [Hà] H. V. Hà, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 429-432.

[005] [Hà-Lê] H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32.

[006] [Hm-Lê] H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-355.

[007] [HMS] J. P. Henry, M. Merle, C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), 227-268. | Zbl 0551.32012

[008] [Ł] S. Łojasiewicz, Ensembles semi-analytiques, preprint, IHES, 1965.

[009] [LM] D. T. Lê, Z. Mebkhout, Variétés caractéristiques et variétés polaires, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 129-132. | Zbl 0566.32020

[010] [MM] Ph. Maisonobe, M. Merle, in preparation.

[011] [Pa] A. Parusiński, On the bifurcation set of a complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. | Zbl 0840.32007

[012] [Ph] F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss- Manin, Astérisque 130 (1985), 11-47.

[013] [Sa] C. Sabbah, Quelques Remarques sur la Géométrie des Espaces Conormaux, Astérisque 130 (1985), 161-192.

[014] [S-T] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783. | Zbl 0871.32024

[015] [Z] A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, II, Université de Bordeaux, preprint (1995). | Zbl 0867.32013