Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p9bwm, author = {Allan, Graham}, title = {Power-bounded elements and radical Banach algebras}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {9-16}, zbl = {0884.47003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p9bwm} }
Allan, Graham. Power-bounded elements and radical Banach algebras. Banach Center Publications, Tome 38 (1997) pp. 9-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p9bwm/
[000] [1] G. R. Allan, A. G. O'Farrell and T. J. Ransford, A tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. | Zbl 0652.46041
[001] [2] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021
[002] [3] R. P. Boas, Entire Functions, Academic Press, New York, 1954. | Zbl 0058.30201
[003] [4] J. Esterle, Quasimultipliers, representations of , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Proc. Conf. Long Beach 1981, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162.
[004] [5] I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50. | Zbl 67.0407.02
[005] [6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
[006] [7] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R.I., 1957. | Zbl 0078.10004
[007] [8] Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328.
[008] [9] T. Pytlik, Analytic semigroups in Banach algebras, Colloq. Math. 51 (1987), 287-294. | Zbl 0632.46043