We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together with the construction of a "functional calculus" for the columns of the associated moment matrix, our operator-theoretic approach allows us to obtain existence theorems for the truncated complex moment problem, in case the columns satisfy one of several natural constraints. We also include an application to the Riemann-quadrature problem from numerical analysis.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p75bwm, author = {Curto, Ra\'ul}, title = {An operator-theoretic approach to truncated moment problems}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {75-104}, zbl = {0884.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p75bwm} }
Curto, Raúl. An operator-theoretic approach to truncated moment problems. Banach Center Publications, Tome 38 (1997) pp. 75-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p75bwm/
[000] [Agl] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), 203-217.
[001] [AK] N. I. Ahiezer and M. G. Krein, Some Questions in the Theory of Moments, Transl. Math. Monographs 2, Amer. Math. Soc., Providence, 1962.
[002] [Akh] N. I. Akhiezer, The Classical Moment Problem, Hafner, New York, 1965.
[003] [And] T. Ando, Truncated moment problems for operators, Acta Sci. Math. (Szeged) 31 (1970), 319-333. | Zbl 0202.13403
[004] [Atz] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math. 59 (1975), 317-325. | Zbl 0319.44009
[005] [Ber] C. Berg, The multidimensional moment problem and semigroups, in: Moments in Mathematics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 110-124.
[006] [BCJ] C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment problem, Math. Ann. 223 (1979), 163-169. | Zbl 0416.46003
[007] [BeM] C. Berg and P. H. Maserick, Polynomially positive definite sequences, ibid. 259 (1982), 487-495. | Zbl 0486.44004
[008] [Bra] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
[009] [Cas] G. Cassier, Problème des moments sur un compact de et décomposition des polynômes à plusieurs variables, J. Funct. Anal. 58 (1984), 254-266. | Zbl 0556.44006
[010] [Con] J. B. Conway, Subnormal Operators, Pitman, London, 1981
[011] [CoC] M. Cotlar and R. Cignoli, An Introduction to Functional Analysis, North-Holland, Amsterdam, 1974. | Zbl 0277.46001
[012] [Cu1] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66. | Zbl 0702.47011
[013] [Cu2] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, in: Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 69-91. | Zbl 0713.47019
[014] [Cu3] R. Curto, Polynomially hyponormal operators on Hilbert space, Rev. Un. Mat. Argentina 37 (1991), 29-56. | Zbl 0815.47024
[015] [CuF1] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246. | Zbl 0804.47028
[016] [CuF2] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, ibid. 18 (1994), 369-426. | Zbl 0807.47016
[017] [CuF3] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635. | Zbl 0757.44006
[018] [CuF4] R. Curto and L. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996). | Zbl 0876.30033
[019] [CuF5] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Relations in analytic or conjugate terms, in: Oper. Theory Adv. Appl., to appear.
[020] [CuF6] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Recursively generated relations, Mem. Amer. Math. Soc., to appear. | Zbl 0913.47016
[021] [CMX] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, in: Oper. Theory Adv. Appl. 35, Birkhäuser, 1988, 1-22.
[022] [CuP1] R. Curto and M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. 25 (1991), 373-378. | Zbl 0758.47027
[023] [CuP2] R. Curto and M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993), 480-497. | Zbl 0817.47026
[024] [Fan] P. Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), 271-272. | Zbl 0509.47023
[025] [Fia] L. Fialkow, Positivity, extensions and the truncated complex moment problem, in: Contemp. Math. 185, Amer. Math. Soc., 1995, 133-150. | Zbl 0830.44007
[026] [Fug] B. Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), 47-65. | Zbl 0514.44006
[027] [Hal] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 124-134.
[028] [Hau] F. Hausdorff, Momentprobleme für ein endliches Intervall, Math. Z. 16 (1923), 220-248. | Zbl 49.0193.01
[029] [Hav1] E. K. Haviland, On the momentum problem for distributions in more than one dimension, Amer. J. Math. 57 (1935), 562-568. | Zbl 0013.05904
[030] [Hav2] E. K. Haviland, On the momentum problem for distributions in more than one dimension, Part II, ibid. 58 (1936), 164-168.
[031] [Hil] D. Hilbert, Über die Darstellung definiter Formen als Summen von Formenquadraten, Math. Ann. 32 (1888), 342-350. | Zbl 20.0198.02
[032] [JeL] N. Jewell and A. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979), 207-223. | Zbl 0431.47016
[033] [Jos1] A. Joshi, Hyponormal polynomials of monotone shifts, Ph.D. dissertation, Purdue University, 1971.
[034] [Jos2] A. Joshi, Hyponormal polynomials of monotone shifts, Indian J. Pure Appl. Math. 6 (1975), 681-686. | Zbl 0355.47014
[035] [KrN] M. G. Krein and A. Nudel'man, The Markov Moment Problem and Extremal Problems, Transl. Math. Monographs 50, Amer. Math. Soc., Providence, 1977.
[036] [Lan] H. Landau, Classical background of the moment problem, in: Moments in Mathema- tics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 1-15.
[037] [Li] X. Li, On positive moment sequences, Ph.D. dissertation, Virginia Tech. Univ., 1993.
[038] [McC] J. McCarthy, private communication.
[039] [McCY] J. McCarthy and L. Yang, Subnormal operators and quadrature domains, preprint, 1995.
[040] [McCP] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187-195. | Zbl 0677.47018
[041] [McG] J. L. McGregor, Solvability criteria for certain N-dimensional moment problems, J. Approx. Theory 30 (1980), 315-333. | Zbl 0458.41025
[042] [Mys] I. P. Mysovskikh, On Chakalov's Theorem, USSR Comp. Math. 15 (1975), 221-227.
[043] [Nar] F. J. Narcowich, R-operators II. On the approximation of certain operator-valued analytic functions and the Hermitian moment problem, Indiana Univ. Math. J. 26 (1977), 483-513.
[044] [Pru] B. Prunaru, Invariant subspaces for polynomially hyponormal operators, preprint, 1995.
[045] [Pu1] M. Putinar, A two-dimensional moment problem, J. Funct. Anal. 80 (1988), 1-8.
[046] [Pu2] M. Putinar, The L problem of moments in two dimensions, ibid. 94 (1990), 288-307.
[047] [Pu3] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), 969-984. | Zbl 0796.12002
[048] [Pu4] M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, J. Funct. Anal. 136 (1996), 331-364. | Zbl 0917.47014
[049] [Pu5] M. Putinar, Quadrature domains and hyponormal operators, lecture at SEAM XI, Georgia Tech. Univ., Atlanta, 1995.
[050] [Pu6] M. Putinar, On Tchakaloff's Theorem, preprint, 1995.
[051] [Rez1] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 463 (1992). | Zbl 0762.11019
[052] [Rez2] B. Reznick, e-mail communication.
[053] [Sar] D. Sarason, Moment problems and operators on Hilbert space, in: Moments in Mathematics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 54-70.
[054] [Sch1] K. Schmüdgen, An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional, Math. Nachr. 88 (1979), 385-390. | Zbl 0424.46041
[055] [Sch2] K. Schmüdgen, The K-moment problem for semi-algebraic sets, Math. Ann. 289 (1991), 203-206. | Zbl 0744.44008
[056] [SeS] Z. Sebestyén and J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged) 55 (1991), 149-154. | Zbl 0897.47015
[057] [ShT] J. Shohat and J. Tamarkin, The Problem of Moments, Math. Surveys 1, Amer. Math. Soc., Providence, 1943.
[058] [Smu] J. L. Smul'jan, An operator Hellinger integral, Mat. Sb. 91 (1959), 381-430 (in Russian).
[059] [Sta] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379. | Zbl 0189.43902
[060] [StSz1] J. Stochel and F. H. Szafraniec, A characterization of subnormal operators, in: Spectral Theory of Linear Operators and Related Topics, Birkhäuser, 1984, 261-263.
[061] [StSz2] J. Stochel and F. H. Szafraniec, Unbounded weighted shifts and subnormality, Integral Equations Operator Theory 12 (1989), 146-153. | Zbl 0675.47011
[062] [StSz3] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators, III. Spectral properties, Publ. RIMS 25 (1989), 105-139. | Zbl 0721.47009
[063] [StSz4] J. Stochel and F. H. Szafraniec, Algebraic operators and moments on algebraic sets, Portugal. Math. 51 (1994), 1-21. | Zbl 0815.47058
[064] [Str] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, 1971. | Zbl 0379.65013
[065] [Sza1] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: An application to moment problems, Ark. Mat. 19 (1981), 251-259. | Zbl 0504.47030
[066] [Sza2] F. H. Szafraniec, Moments on compact sets, in: Prediction Theory and Harmonic Analysis, V. Mandrekar and H. Salehi (eds.), North-Holland, Amsterdam, 1983, 379-385.
[067] [Tch] V. Tchakaloff, Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math. 81 (1957), 123-134. | Zbl 0079.13908
[068] [Wol] Wolfram Research, Inc., Mathematica, Version 2.1, Champaign, Illinois, 1992.