Boundedness properties of resolvents and semigroups of operators
van Casteren, J.
Banach Center Publications, Tome 38 (1997), p. 59-74 / Harvested from The Polish Digital Mathematics Library

Let T: H → H be an operator in the complex Hilbert space H. Suppose that T is square bounded in average in the sense that there exists a constant M(T) with the property that, for all natural numbers n and for all x ∈ H, the inequality 1/(n+1)j=0nTjx2M(T)2x2 is satisfied. Also suppose that the adjoint T* of the operator T is square bounded in average with constant M(T*). Then the operator T is power bounded in the sense that supTin:n is finite. In fact the following inequality is valid for all n ∈ ℕ: ∥Tn∥ ≤ e M(T)M(T*). Suppose that T has a bounded everywhere defined inverse S with the property that for λ in the open unit disc of ℂ the operator (I-λS)-1 exists and that the expression sup(1-|λ|)(I-λS)-1:|λ|<1 is finite. If T is power bounded, then so is S and hence in such a situation the operator T is similar to a unitary operatorsimilarity to unitary operator. If both the operators T* and S are square bounded in average, then again the operator T is similar to a unitary operator. Similar results hold for strongly continuous semigroups instead of (powers) of a single operator. Some results are also given in the more general Banach space context.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208649
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p59bwm,
     author = {van Casteren, J.},
     title = {Boundedness properties of resolvents and semigroups of operators},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {59-74},
     zbl = {0892.47009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p59bwm}
}
van Casteren, J. Boundedness properties of resolvents and semigroups of operators. Banach Center Publications, Tome 38 (1997) pp. 59-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p59bwm/

[000] [1] J. M. Anderson, J. G. Clunie and Ch. Pommerenke, On Bloch functions and normal families, J. Reine Angew. Math. 270 (1974), 12-37.

[001] [2] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255-265. | Zbl 0352.30032

[002] [3] G. Bennett, D. A. Stegenga and R. M. Timoney, Coefficients of Bloch functions and Lipschitz functions, Illinois J. Math. 25 (1981), 520-531. | Zbl 0443.30041

[003] [4] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039

[004] [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973. | Zbl 0262.47001

[005] [6] P. Duren, Theory of Hp-spaces, Academic Press, New York, 1970. | Zbl 0215.20203

[006] [7] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin, 1977.

[007] [8] H. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1974. | Zbl 0837.43002

[008] [9] H. G. Garnir, K. R. Unni and J. H. Williams, Functional Analysis and its Applications, Lecture Notes in Math. 399, Springer, Berlin, 1974.

[009] [10] I. C. Gohberg and M. G. Krein, On a description of contraction operators similar to unitary ones, Funktsional. Anal. i Prilozhen. 1 (1) (1976), 38-60 (in Russian).

[010] [11] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1976.

[011] [12] W. K. Hayman, Multivalent Functions, Cambridge University Press, Cambridge, 1958.

[012] [13] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence R.I., 1957.

[013] [14] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1976. | Zbl 0342.47009

[014] [15] M. G. Krein, Analytic problems in the theory of linear operators in Hilbert space (abstract), Amer. Math. Soc. Transl. 70 (1968), 68-72.

[015] [16] M. G. Krein, Analytic problems in the theory of linear operators in Hilbert space, in: Proc. Internat. Congress Math. Moscow 1966, Mir, Moscow, 1968, 189-216 (in Russian).

[016] [17] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.

[017] [18] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974. | Zbl 0278.26001

[018] [19] A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374. | Zbl 0358.47025

[019] [20] J. G. Stampfli, A local spectral theory for operators, III: Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133-151. | Zbl 0245.47002

[020] [21] E. M. Stein, Singular Integral Operators and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University Press, 1970.

[021] [22] J. C. Strikwerda, Finite Differences and Partial Differential Equations, The Wadsworth and Brooks/Cole Math. Series vol. 1989 (1), Wadsworth & Brooks, Pacific Grove, Calif., 1989.

[022] [23] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.

[023] [24] B. Sz.-Nagy and C. Foiaş, Sur les contractions de l'espace de Hilbert X; contractions similaires à des transformations unitaires, ibid. 26 (1965), 79-91. | Zbl 0138.38905

[024] [25] B. Sz.-Nagy and C. Foiaş, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akadémiai Kiadó, Budapest, 1967. | Zbl 0157.43201

[025] [26] J. A. van Casteren, A problem of Sz.-Nagy, Acta Sci. Math. (Szeged) 42 (1980), 189-194. | Zbl 0437.47001

[026] [27] J. A. van Casteren, Operators similar to unitary or self-adjoint ones, Pacific J. Math. 104 (1983), 241-255. | Zbl 0457.47002

[027] [28] J. A. van Casteren, Generators of Strongly Continuous Semigroups, Pitman, London, 1985.

[028] [29] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1972. | Zbl 0060.24801

[029] [30] D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971. | Zbl 0219.44001

[030] [31] K. Yosida, Functional Analysis, 3rd ed., Springer, Berlin, 1971.

[031] [32] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005