Complementary triangular forms
Zuidwijk, Rob
Banach Center Publications, Tome 38 (1997), p. 443-452 / Harvested from The Polish Digital Mathematics Library

The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208646
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p443bwm,
     author = {Zuidwijk, Rob},
     title = {Complementary triangular forms},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {443-452},
     zbl = {0877.15012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p443bwm}
}
Zuidwijk, Rob. Complementary triangular forms. Banach Center Publications, Tome 38 (1997) pp. 443-452. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p443bwm/

[000] [1] N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350. | Zbl 0056.11302

[001] [2] H. Bart, Transfer functions and operator theory, Linear Algebra Appl. 84 (1986), 33-61. | Zbl 0612.47013

[002] [3] H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Oper. Theory: Adv. Appl. 1, Birkhäuser, Basel, 1979. | Zbl 0424.47001

[003] [4] H. Bart and H. Hoogland, Complementary triangular forms of pairs of matrices, realizations with prescribed main matrices, and complete factorization of rational matrix functions, Linear Algebra Appl. 103 (1988), 193-228. | Zbl 0645.15012

[004] [5] H. Bart and L. G. Kroon, Companion based matrix functions: description and minimal factorization, Linear Algebra Appl. 248 (1996), 1-46. | Zbl 0862.15017

[005] [6] H. Bart and L. G. Kroon, Factorization and job scheduling: a connection via companion based rational matrix functions, ibid., to appear. | Zbl 0862.15018

[006] [7] H. Bart and L. G. Kroon, Variants of the two machine flow shop problem, European J. Oper. Res., to appear. | Zbl 0827.90074

[007] [8] H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of upper triangular Toeplitz matrices, in: Oper. Theory: Adv. Appl. 40, Birkhäuser, 1989, 133-149.

[008] [9] H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of nonderogatory, Jordan and rank one matrices, Report 9003/B, Econometric Institute, Erasmus University Rotterdam, 1990.

[009] [10] H. Bart and G. Ph. A. Thijsse, Eigenspace and Jordan-chain techniques for the description of complementary triangular forms, Report 9353/B, Econometric Institute, Erasmus University Rotterdam, 1993.

[010] [11] H. Bart and H. K. Wimmer, Simultaneous reduction to triangular and companion forms of pairs of matrices: the case rank(I-AZ) = 1, Linear Algebra Appl. 150 (1991), 443-461. | Zbl 0724.15011

[011] [12] H. Bart and R. A. Zuidwijk, Triangular forms after extensions with zeroes, submitted. | Zbl 0941.15004

[012] [13] M. P. Drazin, J. W. Dungey and K. W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951), 221-228. | Zbl 0043.25201

[013] [14] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317. | Zbl 0267.46012

[014] [15] S. Friedland, Pairs of matrices which do not admit a complementary triangular form, Linear Algebra Appl. 150 (1990), 119-123. | Zbl 0757.15005

[015] [16] G. Frobenius, Über vertauschbare Matrizen, Sitz.-Ber. Akad. Wiss. Berlin 26 (1896), 601-614.

[016] [17] F. J. Gaines and R. C. Thompson, Sets of nearly triangular matrices, Duke Math. J. 35 (1968), 441-453. | Zbl 0174.31802

[017] [18] I. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monographs 24, A.M.S, Providence, R.I., 1969. | Zbl 0194.43804

[018] [19] T. J. Laffey, Simultaneous triangularization of a pair of matrices, J. Algebra 44 (1977), 550-557. | Zbl 0348.15006

[019] [20] T. J. Laffey, Simultaneous triangularization of matrices--low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978), 269-305. | Zbl 0399.15008

[020] [21] T. J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986), 123-138. | Zbl 0609.15004

[021] [22] C. Laurie, E. Nordgren, H. Radjavi and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143-155. | Zbl 0465.47010

[022] [23] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition with Applications, Academic Press, Orlando, Fla., 1985. | Zbl 0558.15001

[023] [24] N. H. McCoy, On the characteristic roots of matric polynomials, Bull. Amer. Math. Soc. 42 (1936), 592-600. | Zbl 0015.05501

[024] [25] G. J. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 354-356. | Zbl 0492.47023

[025] [26] H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386. | Zbl 0577.47018

[026] [27] J. R. Ringrose, Non-Self-Adjoint Compact Linear Operators, van Nostrand, New York, 1971. | Zbl 0223.47012

[027] [28] S. H. Tan and J. Vandewalle, On factorizations of rational matrices, IEEE Trans. Circuits and Systems 35 (1988), 1179-1181. | Zbl 0664.15004

[028] [29] R. A. Zuidwijk, Complementary triangular forms for pairs of matrices and operators, doctoral thesis, 1994.

[029] [30] R. A. Zuidwijk, Quasicomplete factorizations for rational matrix functions, Integral Equations Operator Theory, to appear. | Zbl 0889.15010

[030] [31] R. A. Zuidwijk, H. Bart and L. Kroon, Quasicomplete factorization and the two machine flow shop problem, Report 9632/B, Econometric Institute, Erasmus University Rotterdam, 1996. | Zbl 0941.90031