In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm, author = {Upmeier, Harald}, title = {Toeplitz-Berezin quantization and non-commutative differential geometry}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {385-400}, zbl = {0890.47017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm} }
Upmeier, Harald. Toeplitz-Berezin quantization and non-commutative differential geometry. Banach Center Publications, Tome 38 (1997) pp. 385-400. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm/
[000] [AG] J. d'Atri and S. Gindikin, Siegel domain realization of pseudo-Hermitian symmetric manifolds, Geom. Dedicata 46 (1993), 91-125. | Zbl 0795.32012
[001] [B1] F. A. Berezin, A connection between the co- and contravariant symbols of operators on classical complex symmetric spaces, Soviet Math. Dokl. 19 (1978), 786-789. | Zbl 0439.47038
[002] [BLU] D. Borthwick, A. Lesniewski and H. Upmeier, Non-perturbative deformation quantization of Cartan domains, J. Funct. Anal 113 (1993), 153-176. | Zbl 0794.46051
[003] [FK] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, 1994. | Zbl 0841.43002
[004] [G1] S. Gindikin, Fourier transform and Hardy spaces of -cohomology in tube domains, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1139-1143. | Zbl 0771.32001
[005] [G2] V. Guillemin, Toeplitz operators in n-dimensions, Integral Equations Operator Theory 7 (1984), 145-205.
[006] [K1] S. Kaneyuki, Pseudo-Hermitian symmetric spaces and symmetric domains over non-degenerate cones, Hokkaido Math. J. 20 (1991), 213-239. | Zbl 0751.32017
[007] [L1] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine, 1979.
[008] [S1] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80. | Zbl 0219.32013
[009] [S2] W. Schmid, On the characters of discrete series (the hermitian symmetric case), ibid. 30 (1975), 47-144.
[010] [U1] H. Upmeier, Jordan C*-Algebras and Symmetric Banach Manifolds, North-Holland, 1985.
[011] [U2] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. 108 (1986), 1-25. | Zbl 0603.46055
[012] [U3] H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc. 280 (1983), 221-237. | Zbl 0527.47019
[013] [U4] H. Upmeier, Toeplitz C*-algebras on bounded symmetric domains, Ann. of Math. 119 (1984), 549-576. | Zbl 0549.46031
[014] [U5] H. Upmeier, Multivariable Toeplitz Operators and Index Theory, Birkhäuser, 1996.
[015] [U6] A. & J. Unterberger, Quantification et analyse pseudo-différentielle, Ann. Sci. École Norm. Sup. 21 (1988), 133-158. | Zbl 0646.58025
[016] [U7] H. Upmeier, Weyl quantization of symmetric spaces (I): Hyperbolic matrix domains, J. Funct. Anal. 96 (1991), 297-330. | Zbl 0736.47014
[017] [UU] A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563-597. | Zbl 0843.32019