Toeplitz-Berezin quantization and non-commutative differential geometry
Upmeier, Harald
Banach Center Publications, Tome 38 (1997), p. 385-400 / Harvested from The Polish Digital Mathematics Library

In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208643
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm,
     author = {Upmeier, Harald},
     title = {Toeplitz-Berezin quantization and non-commutative differential geometry},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {385-400},
     zbl = {0890.47017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm}
}
Upmeier, Harald. Toeplitz-Berezin quantization and non-commutative differential geometry. Banach Center Publications, Tome 38 (1997) pp. 385-400. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p385bwm/

[000] [AG] J. d'Atri and S. Gindikin, Siegel domain realization of pseudo-Hermitian symmetric manifolds, Geom. Dedicata 46 (1993), 91-125. | Zbl 0795.32012

[001] [B1] F. A. Berezin, A connection between the co- and contravariant symbols of operators on classical complex symmetric spaces, Soviet Math. Dokl. 19 (1978), 786-789. | Zbl 0439.47038

[002] [BLU] D. Borthwick, A. Lesniewski and H. Upmeier, Non-perturbative deformation quantization of Cartan domains, J. Funct. Anal 113 (1993), 153-176. | Zbl 0794.46051

[003] [FK] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, 1994. | Zbl 0841.43002

[004] [G1] S. Gindikin, Fourier transform and Hardy spaces of ¯-cohomology in tube domains, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1139-1143. | Zbl 0771.32001

[005] [G2] V. Guillemin, Toeplitz operators in n-dimensions, Integral Equations Operator Theory 7 (1984), 145-205.

[006] [K1] S. Kaneyuki, Pseudo-Hermitian symmetric spaces and symmetric domains over non-degenerate cones, Hokkaido Math. J. 20 (1991), 213-239. | Zbl 0751.32017

[007] [L1] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine, 1979.

[008] [S1] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80. | Zbl 0219.32013

[009] [S2] W. Schmid, On the characters of discrete series (the hermitian symmetric case), ibid. 30 (1975), 47-144.

[010] [U1] H. Upmeier, Jordan C*-Algebras and Symmetric Banach Manifolds, North-Holland, 1985.

[011] [U2] H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. 108 (1986), 1-25. | Zbl 0603.46055

[012] [U3] H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc. 280 (1983), 221-237. | Zbl 0527.47019

[013] [U4] H. Upmeier, Toeplitz C*-algebras on bounded symmetric domains, Ann. of Math. 119 (1984), 549-576. | Zbl 0549.46031

[014] [U5] H. Upmeier, Multivariable Toeplitz Operators and Index Theory, Birkhäuser, 1996.

[015] [U6] A. & J. Unterberger, Quantification et analyse pseudo-différentielle, Ann. Sci. École Norm. Sup. 21 (1988), 133-158. | Zbl 0646.58025

[016] [U7] H. Upmeier, Weyl quantization of symmetric spaces (I): Hyperbolic matrix domains, J. Funct. Anal. 96 (1991), 297-330. | Zbl 0736.47014

[017] [UU] A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563-597. | Zbl 0843.32019