The Berezin transform and operators on spaces of analytic functions
Stroethoff, Karel
Banach Center Publications, Tome 38 (1997), p. 361-380 / Harvested from The Polish Digital Mathematics Library

In this article we will illustrate how the Berezin transform (or symbol) can be used to study classes of operators on certain spaces of analytic functions, such as the Hardy space, the Bergman space and the Fock space. The article is organized according to the following outline. 1. Spaces of analytic functions 2. Definition and properties Berezin transform 3. Berezin transform and non-compact operators 4. Commutativity of Toeplitz operators 5. Berezin transform and Hankel or Toeplitz operators 6. Sarason's example

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208641
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p361bwm,
     author = {Stroethoff, Karel},
     title = {The Berezin transform and operators on spaces of analytic functions},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {361-380},
     zbl = {0890.47014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p361bwm}
}
Stroethoff, Karel. The Berezin transform and operators on spaces of analytic functions. Banach Center Publications, Tome 38 (1997) pp. 361-380. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p361bwm/

[000] [1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397. | Zbl 0771.32006

[001] [2] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. | Zbl 0669.47017

[002] [3] S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, Vol. I, J. B. Conway and B. B. % Morrell (eds.), Pitman Res. Notes, 1988, 1-50.

[003] [4] S. Axler, Berezin symbols and non-compact operators, unpublished manuscript, 1988.

[004] [5] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), 1-12. | Zbl 0733.47027

[005] [6] F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR-Izv. 6 (1972), 1117-1151. | Zbl 0259.47004

[006] [7] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. | Zbl 0765.32005

[007] [8] C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, ibid. 68 (1986), 273-299.

[008] [9] C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829. | Zbl 0625.47019

[009] [10] C. A. Berger, L. A. Coburn and K. H. Zhu, Function theory on Cartan domains and Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953. | Zbl 0657.32001

[010] [11] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963), 89-102. | Zbl 0116.32501

[011] [12] J. A. Cima, K. Stroethoff and K. Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), 27-41. | Zbl 0816.46046

[012] [13] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024

[013] [14] V. Guillemin, Toeplitz operators in n-dimensions, Integral Equations Operator Theory 7 (1984), 145-205. | Zbl 0561.47025

[014] [15] G.H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949. | Zbl 0032.05801

[015] [16] B. Korenblum and K. H. Zhu, An application of Tauberian theorems to Toeplitz operators, J. Operator Theory 33 (1995), 353-361. | Zbl 0837.47022

[016] [17] J. Peetre, The Berezin transform and Ha-plitz operators, J. Operator Theory 24 (1990), 165-186. | Zbl 0793.47026

[017] [18] P. Rosenthal, Berezin symbols and compactness of operators, unpublished manuscript, 1986.

[018] [19] W. Rudin, Function Theory in the Unit Ball of n, Springer, New York, 1980. | Zbl 0495.32001

[019] [20] D. Sarason, personal communication.

[020] [21] J.H. Shapiro, The essential norm of a composition operator, Ann. of Math. 12 (1987), 375-404. | Zbl 0642.47027

[021] [22] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159-174. | Zbl 0687.47019

[022] [23] K. Stroethoff, Compact Hankel operators on the Bergman spaces of the unit ball and polydisk in Cn, J. Operator Theory 23 (1990), 153-170. | Zbl 0723.47018

[023] [24] K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 (1992), 3-16. | Zbl 0774.47012

[024] [25] K. Stroethoff, Essentially commuting Toeplitz operators with harmonic symbols, Canad. Math. J. 45 (1993), 1080-1093. | Zbl 0803.47029

[025] [26] K. Stroethoff and D. Zheng, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (1992), 773-794. | Zbl 0755.47020

[026] [27] K. H. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, ibid. 302 (1987), 617-646.

[027] [28] K. H. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.