This paper is concerned with double families of evolution operators employed in the study of dynamical systems in which cause and effect are represented in different Banach spaces. The main tool is the Laplace transform of vector-valued functions. It is used to define the generator of the double family which is a pair of unbounded linear operators and relates to implicit evolution equations in a direct manner. The characterization of generators for a special class of evolutions is presented.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p325bwm, author = {Sauer, Niko}, title = {Empathy theory and the Laplace transform}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {325-338}, zbl = {0885.47013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p325bwm} }
Sauer, Niko. Empathy theory and the Laplace transform. Banach Center Publications, Tome 38 (1997) pp. 325-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p325bwm/
[000] [Are87] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001
[001] [AF93] W. Arendt and A. Favini, Integrated solutions to implicit differential equations, Rend. Sem. Mat. Univ. Pol. Torino 51 (1993), 315-329. | Zbl 0814.34049
[002] [CaSh76] R. W. Carroll and R. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976.
[003] [CS94] W. L. Conradie and N. Sauer, Empathy, C-semigroups and integrated semigroups, in: Evolution Equations, Proc. Conf. Baton Rouge 1993, G. Ferreyra, G. R. Goldstein and F. Neubrander (eds.), Lecture Notes in Pure and Appl. Math. 168, Marcel Dekker, New York, 1995, 123-132.
[004] [daP66] G. da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-246.
[005] [DP87] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181-208. | Zbl 0651.47026
[006] [DeL91] R. deLaubenfels, Existence and uniqueness families, for the abstract Cauchy problem, J. London Math. Soc. 44 (1991), 310-338. | Zbl 0766.47011
[007] [DeL94] R. deLaubenfels, Existence Families, Functional Calculus and Evolution Equations, Lecture Notes in Math. 1570, Springer, Berlin, 1994.
[008] [DU77] J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
[009] [Fav79] A. Favini, Laplace transform method for a class of degenerate evolution equations, Rend. Mat. 3-4 (1979), 511-536.
[010] [Fri58] K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. | Zbl 0083.31802
[011] [HP57] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957.
[012] [Miy51] I. Miyadera, One parameter semi-groups of operators, J. Math. Tokyo 8 (1951), 23-26.
[013] [Sau82] N. Sauer, Linear evolution equations in two Banach spaces, Proc. Roy. Soc. Edinburgh 91A (1982), 387-303.
[014] [Sau95] N. Sauer, Implicit evolution equations and empathy theory, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. Ser. 324, A. C. McBride and G. F. Roach (eds.), Longman, Harlow, 1995, 32-39. | Zbl 0835.47031
[015] [SS87] N. Sauer and J. E. Singleton, Evolution operators related to semigroups of class (A), Semigroup Forum 35 (1987), 317-335. | Zbl 0617.47030
[016] [SS89] N. Sauer and J. E. Singleton, Evolution operators in empathy with a semigroup, ibid. 39 (1989), 85-94. | Zbl 0683.47024
[017] [Wid46] D. V. Widder, The Laplace Transform, Princeton Univ. Press, 2nd printing, 1946.