@article{bwmeta1.element.bwnjournal-article-bcpv38i1p315bwm, author = {Rudol, K.}, title = {Subnormal operators of Hardy type}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {315-324}, zbl = {0896.47019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p315bwm} }
Rudol, K. Subnormal operators of Hardy type. Banach Center Publications, Tome 38 (1997) pp. 315-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p315bwm/
[000] [AD1] M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply connected domains, Adv. in Math. 19 (1976), 106-148. | Zbl 0321.47019
[001] [AD2] M. B. Abrahamse and R. G. Douglas, Operators on multiply connected domains, Proc. Roy. Irish Acad. 74 (1974), 135-141. | Zbl 0302.47009
[002] [AK] M. B. Abrahamse and T. Kriete, The spectral multiplicity of a multiplication operator, Indiana Univ. Math. J. 22 (1973), 845-857. | Zbl 0259.47031
[003] [C1] J. B. Conway, Spectral properties of certain operators on Hardy spaces of planar domains, Integral Equations Operator Theory 10 (1987), 659-706. | Zbl 0658.47028
[004] [G] T. W. Gamelin, Uniform Algebras, Prentice Hall, Englewood Cliffs, N.J., 1969. | Zbl 0213.40401
[005] [H] M. Hasumi, Hardy Classes on Infinitely Connected Riemann Surfaces, Lecture Notes in Math. 1027, Springer, 1983. | Zbl 0523.30028
[006] [M] W. Mlak, Szegő measures related to plane sets, Comment. Math., Tomus spec. in honorem L. Orlicz 1 (1978), 239-249. | Zbl 0445.46037
[007] [P] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. | Zbl 0762.30001
[008] [R1] K. Rudol, The functional model for a class of subnormal operators, Bull. Polish Acad. Sci. Math. 30 (1982), 71-77.
[009] [R2] K. Rudol, The generalised Wold Decomposition for subnormal operators, Integral Equations Operator Theory 11 (1988), 420-436.
[010] [R3] K. Rudol, On bundle shifts and cluster sets, ibid. 12 (1989), 444-448.
[011] [R4] K. Rudol, A model for some analytic Toeplitz operators, Studia Math. 100 (1991), 81-86.
[012] [R5] K. Rudol, Spectra of subnormal Hardy type operators, Ann. Polon. Math. 65 (1997), 213-222.
[013] [S] M. V. Samokhin, Some classical problems of analytic functions theory in Parreau-Widom domains, Mat. Sb. 182 (1991), 892-910 (in Russian). | Zbl 0761.30020
[014] [S1] M. V. Samokhin, On limit properties of bounded holomorphic functions and maximum modulus principle in domains of arbitrary connectivity, ibid. 135 (1988), 497-513 (in Russian). | Zbl 0663.30028
[015] [SP] J. Spraker, The minimal normal extension for on the Hardy space of a planar domain, Trans. Amer. Math. Soc. 318 (1990), 57-67.
[016] [Y] D. V. Yakubovich, Riemann surface models of Toeplitz operators, in: Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 305-415.
[017] [Y1] D. V. Yakubovich, Dual piecewise analytic bundle shift models of linear operators, J. Funct. Anal. 136 (1996), 294-330. | Zbl 0867.47010