Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of and .
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p297bwm, author = {R\"onnefarth, Helmuth}, title = {On the differences of the consecutive powers of Banach algebra elements}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {297-314}, zbl = {0892.46058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p297bwm} }
Rönnefarth, Helmuth. On the differences of the consecutive powers of Banach algebra elements. Banach Center Publications, Tome 38 (1997) pp. 297-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p297bwm/
[000] [1] G. R. Allan and T. J. Ransford, Power dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021
[001] [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039
[002] [3] L. Burlando, Uniformly -ergodic operators and poles of the resolvent, Semester ’Linear Operators’, Banach Center, Warszawa, 1994.
[003] [4] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. | Zbl 0558.46001
[004] [5] J. Esterle, Quasimultipliers, representations of H, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162.
[005] [6] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. | Zbl 67.0407.02
[006] [7] H. Heuser, Funktionalanalysis, 2. Aufl., Teubner, Stuttgart, 1986.
[007] [8] S. Huang, Stability properties characterizing the spectra of operators on Banach spaces, J. Funct. Anal. 132 (1995), 361-382. | Zbl 0843.43008
[008] [9] B. Huppert, Angewandte Lineare Algebra, de Gruyter, Berlin, 1990.
[009] [10] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. (3) 18 (1968), 428-438. | Zbl 0162.18601
[010] [11] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005
[011] [12] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473. | Zbl 0265.46049
[012] [13] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen, die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181. | Zbl 0109.34702
[013] [14] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. | Zbl 0252.47004
[014] [15] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
[015] [16] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993. | Zbl 0846.47008
[016] [17] J. I. Nieto, On the peripheral spectrum, Manuscripta Math. 32 (1980), 137-148. | Zbl 0455.47021
[017] [18] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, 1993.
[018] [19] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106. | Zbl 0724.15021
[019] [20] A. Święch, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1990), 266. | Zbl 0725.47003
[020] [21] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. | Zbl 0501.46003
[021] [22] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024. | Zbl 0781.47003
[022] [23] H. D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. | Zbl 0555.47008
[023] [24] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984. | Zbl 0531.40008
[024] [25] T. Yoshimoto, On the speed of convergence in the uniform ergodic theorem for quasi-compact operators, J. Math. Anal. Appl. 176 (1993), 413-422. | Zbl 0793.47014
[025] [26] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385. | Zbl 0822.47005