@article{bwmeta1.element.bwnjournal-article-bcpv38i1p287bwm, author = {Radjavi, Heydar}, title = {Invariant Subspaces and Spectral Conditions on Operator Semigroups}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {287-296}, zbl = {0931.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p287bwm} }
Radjavi, Heydar. Invariant Subspaces and Spectral Conditions on Operator Semigroups. Banach Center Publications, Tome 38 (1997) pp. 287-296. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p287bwm/
[000] [1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979. | Zbl 0409.46054
[001] [2] M. D. Choi, E. Nordgren, H. Radjavi, P. Rosenthal and Y. Zhong, Triangularizing semigroups of quasinilpotent operators with nonnegative entries, Indiana Univ. Math. J. 42 (1993), 15-25. | Zbl 0818.47035
[002] [3] P. Fillmore, G. MacDonald, M. Radjabalipour, and H. Radjavi, Towards a classification of maximal unicellular bands, Semigroup Forum 49 (1994), 195-215. | Zbl 0811.20061
[003] [4] N. Jacobson, Lectures in Abstract Algebra II: Linear Algebra, Van Nostrand, Princeton, 1953.
[004] [5] D. Hadwin, Radjavi's trace condition for triangularizability, J. Algebra 109 (1987), 184-192. | Zbl 0626.47019
[005] [6] D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, A nil algebra of bounded operators on Hilbert space with semisimple norm closure, Integral Equations Operator Theory 9 (1986), 739-743. | Zbl 0631.47034
[006] [7] D. Hadwin, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), 581-602. | Zbl 0784.47032
[007] [8] I. Kaplansky, The Engel-Kolchin theorem revisited, in: Contributions to Algebra, H. Bass, P. J. Cassidy, and J. Kovacik (eds.), Academic Press, New York, 1977, 233-237.
[008] [9] A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), 547-554. | Zbl 0665.47016
[009] [10] L. Lambrou, W. Longstaff and H. Radjavi, Spectral conditions and reducibility of operator semigroups, Indiana Univ. Math. J. 41 (1992), 449-464. | Zbl 0766.47010
[010] [11] J. Levitzki, Über nilpotente Unterringe, Math. Ann. 105 (1931), 620-627.
[011] [12] V. I. Lomonosov, Invariant subspaces for the family of operators commuting with compact operators, Funktsional. Anal. i Prilozhen. 7 (3) (1973), 55-56 (in Russian).
[012] [13] W. Longstaff and H. Radjavi, On permutability and submultiplicativity of spectral radius, Canad. J. Math. 47 (1995), 1007-1022. | Zbl 0844.47003
[013] [14] E. Nordgren, H. Radjavi and P. Rosenthal, Triangularizing semigroups of compact operators, Indiana Univ. Math. J. 33 (1984), 271-275. | Zbl 0579.47041
[014] [15] M. Omladič and H. Radjavi, Irreducible semigroups with multiplicative spectral radius, Linear Algebra Appl. 251 (1997), 59-72. | Zbl 0937.47043
[015] [16] H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386. | Zbl 0577.47018
[016] [17] H. Radjavi, The Engel-Jacobson theorem revisited, J. Algebra 111 (1987), 427-430. | Zbl 0645.15010
[017] [18] H. Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), 63-71. | Zbl 0581.47026
[018] [19] H. Radjavi, On reducibility of semigroups of compact operators, Indiana Univ. Math. J. 39 (1990), 499-515. | Zbl 0770.47010
[019] [20] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, Berlin, 1973. | Zbl 0269.47003
[020] [21] H. Radjavi and P. Rosenthal, The invariant subspace problem, Math. Intelligencer 4 (1982), 33-37. | Zbl 0496.47008
[021] [22] J. Ringrose, Super diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367-384. | Zbl 0102.10301
[022] [23] V. S. Shul'man, On invariant subspaces of Volterra operators, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 85-86 (in Russian).
[023] [24] V. S. Shul'man, Invariant subspaces and spectral mapping theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 313-325.
[024] [25] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN, Warszawa, 1982, 579-595.
[025] [26] Y. Zhong, Functional positivity and invariant subspaces of semigroups of operators, Houston J. Math. 19 (1993), 239-262. | Zbl 0798.47030