The paper relates several generalized eigenfunction expansions to classical spectral decomposition properties. From this perspective one explains some recent results concerning the classes of decomposable and generalized scalar operators. In particular a universal dilation theory and two different functional models for related classes of operators are presented.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p265bwm, author = {Putinar, Mihai}, title = {Generalized eigenfunction expansions and spectral decompositions}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {265-286}, zbl = {0884.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p265bwm} }
Putinar, Mihai. Generalized eigenfunction expansions and spectral decompositions. Banach Center Publications, Tome 38 (1997) pp. 265-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p265bwm/
[000] Agler, J. (1985). Rational dilation in an annulus, Ann. of Math. 121, 537-564. | Zbl 0609.47013
[001] Albrecht, E. (1978). On two questions of Colojoarǎ and Foiaş, Manuscripta Math. 25, 1-15. | Zbl 0407.47017
[002] Albrecht, E. and Eschmeier, J. (1987). Functional models and local spectral theory, preprint. | Zbl 0881.47007
[003] Berezanskiĭ, Yu. M. (1968). Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc. Transl., Providence, R.I.
[004] Bishop, E. (1959). A duality theorem for an arbitrary operator, Pacific J. Math. 9, 379-394. | Zbl 0086.31702
[005] Colojoarǎ, I. and Foiaş, C. (1968). Theory of Generalized Scalar Operators, Gordon and Breach, New York. | Zbl 0189.44201
[006] Dirac, P. A. M. (1930). The Principles of Quantum Mechanics, Clarendon Press, Oxford. | Zbl 56.0745.05
[007] Douglas, R. G. and Foiaş, C. (1976). A homological view in dilation theory, preprint.
[008] Douglas, R. G. and Paulsen, V. (1989). Hilbert modules over function algebras, Pitman Res. Notes in Math. 219, Harlow. | Zbl 0686.46035
[009] Dunford, N. and Schwartz, J., Linear Operators, p. I. (1958), p. II. (1963), p. III. (1971), Wiley-Interscience, New York.
[010] Dynkin, E. M. (1972). Functional calculus based on Cauchy-Green's formula, in: Research in linear operators and function theory. III, Leningrad Otdel. Mat. Inst. Steklov, 33-39 (in Russian).
[011] Eschmeier, J. (1985). Spectral decompositions and decomposable multipliers, Manuscripta Math. 51, 201-224. | Zbl 0578.47024
[012] Eschmeier, J. and Prunaru, B. (1990). Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94, 196-222. | Zbl 0744.47003
[013] Eschmeier, J. and Putinar, M. (1984). Spectral theory and sheaf theory. III, J. Reine Angew. Math. 354, 150-163. | Zbl 0539.47002
[014] Eschmeier, J. and Putinar, M. (1988). Bishop's condition (β) and rich extensions of linear operators, Indiana Univ. Math. J. 37, 325-348. | Zbl 0674.47020
[015] Eschmeier, J. and Putinar, M. (1989). On quotients and restrictions of generalized scalar operators, J. Funct. Anal. 84, 115-134. | Zbl 0678.47029
[016] Eschmeier, J. and Putinar, M. (1996). Spectral Decompositions and Analytic Sheaves, Oxford University Press, Oxford. | Zbl 0855.47013
[017] Foiaş, C. (1963). Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basel) 14, 341-349. | Zbl 0176.43802
[018] Frunzǎ, S. (1975). The Taylor spectrum and spectral decompositions, J. Funct. Anal. 19, 390-421. | Zbl 0306.47013
[019] Gamelin, T. (1970). Localization of the corona problem, Pacific J. Math. 34, 73-81. | Zbl 0199.18801
[020] Garnett, J. B. (1981). Bounded Analytic Functions, Academic Press, New York. | Zbl 0469.30024
[021] Gohberg, I. and Krein, M. G. (1969). Introduction to the Theory of Linear Non-selfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I. | Zbl 0181.13504
[022] Henkin, G. and Leiterer, J. (1984). Theory of Functions on Complex Manifolds, Birkhäuser, Basel-Boston-Stuttgart.
[023] Hörmander, L. (1965). -estimates and existence theorems for the -operator, Acta Math. 113, 89-152. | Zbl 0158.11002
[024] Lange, R. (1981). A purely analytic criterion for a decomposable operator, Glasgow Math. J. 21, 69-70. | Zbl 0422.47017
[025] Levy, R. N. (1987). The Riemann-Roch theorem for complex spaces, Acta Math. 158, 149-188. | Zbl 0627.32004
[026] Lyubich, Yu. I. and Matsaev, V. I. (1962). Operators with separable spectrum, Mat. Sb. 56, 433-468 (in Russian).
[027] MacLane, S. (1963). Homology, Springer, Berlin. | Zbl 0133.26502
[028] Martin, M. and Putinar, M. (1989). Lectures on Hyponormal Operators, Birkhäuser, Basel. | Zbl 0684.47018
[029] Putinar, M. (1983). Spectral theory and sheaf theory. I, in: Dilation Theory, Toeplitz Operators and Other Topics, Birkhäuser, Basel. | Zbl 0525.47010
[030] Putinar, M. (1985). Hyponormal operators are subscalar, J. Operator Theory 12, 385-395. | Zbl 0573.47016
[031] Putinar, M. (1986). Spectral theory and sheaf theory. II, Math. Z. 192, 473-490. | Zbl 0608.47011
[032] Putinar, M. (1990). Spectral theory and sheaf theory. IV, in: Proc. Sympos. Pure Math. 51, part 2, Amer. Math. Soc., 273-293. | Zbl 0778.47023
[033] Putinar, M. (1992). Quasi-similarity of tuples with Bishop's property (β), Integral Equations Operator Theory 15, 1040-1052. | Zbl 0773.47011
[034] Radjabalipour, M. (1978). Decomposable operators, Bull. Iranian Math. Soc. 9, 1-49. | Zbl 0696.47032
[035] Schwartz, L. (1955). Division par une fonction holomorphe sur une variété analytique complexe, Summa Brasil. Math. 3, 181-209.
[036] Sz.-Nagy, B. and Foiaş, C. (1967). Analyse harmonique des opérateurs de l'espace de Hilbert, Akad. Kiadó, Budapest. | Zbl 0157.43201
[037] Taylor, J. L. (1970). A joint spectrum for several commuting operators, J. Funct. Anal. 6, 172-191. | Zbl 0233.47024
[038] Taylor, J. L. (1972a). Homology and cohomology for topological algebras, Adv. in Math. 9, 147-182. | Zbl 0271.46040
[039] Taylor, J. L. (1972b). A general framework for a multioperator functional calculus, Adv. in Math. 9, 184-252.
[040] Vasilescu, F. H. (1982). Analytic Functional Calculus and Spectral Decompositions, Reidel, Dordrecht. | Zbl 0495.47013