Singular evolution problems, regularization, and applications to physics, engineering, and biology
Lumer, Günter
Banach Center Publications, Tome 38 (1997), p. 205-216 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208630
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p205bwm,
     author = {Lumer, G\"unter},
     title = {Singular evolution problems, regularization, and applications to physics, engineering, and biology},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {205-216},
     zbl = {0884.34002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p205bwm}
}
Lumer, Günter. Singular evolution problems, regularization, and applications to physics, engineering, and biology. Banach Center Publications, Tome 38 (1997) pp. 205-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p205bwm/

[000] [1] W. Arendt, Vector-valued Laplace transform and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001

[001] [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595. | Zbl 0833.47034

[002] [4] R. Beals, On the abstract Cauchy problem, J. Funct. Anal. 10 (1972), 281-299. | Zbl 0239.34028

[003] [3] R. Beals, Semigroups and abstract Gevrey spaces, ibid. 10 (1972), 300-398. | Zbl 0236.47044

[004] [5] J. Chazarain, Problèmes de Cauchy dans les espaces d'ultra-distributions, C. R. Acad. Sci. Paris Sér. A 226 (1968), 564-566. | Zbl 0162.46002

[005] [6] J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal. 7 (1971), 386-446. | Zbl 0211.12902

[006] [7] I. Cioranescu, Local convoluted semigroups, to appear.

[007] [8] I. Cioranescu et G. Lumer, Problèmes d'évolution régularisés par un noyau général K(t). Formule de Duhamel, prolongements, théorèmes de génération, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1273-1278. | Zbl 0821.47032

[008] [9] I. Cioranescu et G. Lumer, On K(t)-convoluted semigroups, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. 324, 1995, 86-93. | Zbl 0828.34046

[009] [10] I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applications to operator theory, in: Spectral Theory, Banach Center Publ. 8, 1982, PWN, Warszawa, 77-220.

[010] [11] Ph. Clément, H. Heijmans et al., One parameter semigroups, CWI Monographs, North-Holland, Amsterdam, 1987.

[011] [12] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.

[012] [13] G. Da Prato and E. Sinestrari, Differential operators with non dense domains, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. | Zbl 0652.34069

[013] [14] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208. | Zbl 0651.47026

[014] [15] H. Emamirad, Systèmes pseudo différentiels d'évolution bien posés au sens des distributions de Beurling, Boll. Un. Mat. Ital. (6) 1 (1982), 303-322. | Zbl 0511.35091

[015] [16] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. | Zbl 0138.06203

[016] [17] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. | Zbl 0689.47014

[017] [18] V. Keyantuo, The Weierstrass formula and the abstract Cauchy problem, to appear. | Zbl 0839.34070

[018] [19] V. Keyantuo, On the boundary value theorem for holomorphic semigroups, preprint Math. Dep. Univ. of Puerto Rico, Rio Piedras. | Zbl 0832.47032

[019] [20] H. Komatsu, Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105.

[020] [21] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61. | Zbl 0895.47029

[021] [22] J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164. | Zbl 0103.09001

[022] [23] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 577-582. | Zbl 0693.47033

[023] [24] G. Lumer, Applications de solutions généralisées et semi-groupes intégrés à des problèmes d'évolution, ibid. 311 (1990), 873-878. | Zbl 0738.47034

[024] [25] G. Lumer, Problèmes dissipatifs et analytiques mal posés : solutions et théorie asymptotique, ibid. 312 (1991), 831-836. | Zbl 0744.34059

[025] [26] G. Lumer, A (very) direct approach to locally lipschitz integrated semigroups and some new related results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDES 1990-1991, Louisiana State University, Baton Rouge, 1991, 88-107.

[026] [27] G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l'identification de semi-groupes irréguliers analytiques et résultats de génération, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1033-1038. | Zbl 0768.47019

[027] [28] G. Lumer, Problèmes d'évolution avec chocs (changements brusques de conditions au bord) et valeurs au bord variables entre chocs consécutifs, ibid. 316 (1993), 41-46. | Zbl 0790.58006

[028] [29] G. Lumer, Models for diffusion-type phenomena with abrupt changes in boundary conditions, in Banach space and classical context. Asymptotics under periodic shocks, in: Evolution Equations, Control Theory and Biomathematics, Lecture Notes in Pure Appl. Math. 155, Marcel Dekker, New York, 1994, 337-351.

[029] [30] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Annales Saraviensis 5 (1) (1994), 1-102. | Zbl 0813.34057

[030] [31] G. Lumer, Singular problems, generalized solutions, and stability topologies, in: Partial Differential Equations. Models in Physics and Biology, Math. Res. 82, Akademie Verlag, Berlin, 1994, 204-215. | Zbl 0834.35058

[031] [32] I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242. | Zbl 0617.47032

[032] [33] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155. | Zbl 0675.47030

[033] [34] P. Shapira, Théorie des hyperfonctions, Lecture Notes in Math. 126, Springer, 1970.

[034] [35] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. | Zbl 0589.47042

[035] [36] E. Sinestrari and W. von Wahl, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 339-355. | Zbl 0664.35041

[036] [37] H. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), 1035-1066. | Zbl 0734.34059