@article{bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm, author = {deLaubenfels, Ralph}, title = {Spectral projections, semigroups of operators, and the Laplace transform}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {193-204}, zbl = {0904.47014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm} }
deLaubenfels, Ralph. Spectral projections, semigroups of operators, and the Laplace transform. Banach Center Publications, Tome 38 (1997) pp. 193-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm/
[000] [1] E. Albrecht and W. J. Ricker, Local spectral properties of constant coefficient differential operators in , J. Operator Theory 24 (1990), 85-103. | Zbl 0790.47025
[001] [2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001
[002] [3] E. Berkson, T. A. Gillespie and S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. 53 (1986), 489-517. | Zbl 0609.47042
[003] [4] K. Boyadzhiev and R. deLaubenfels, Spectral theorem for generators of strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.
[004] [5] I. Colojoara and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. | Zbl 0189.44201
[005] [6] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded functional calculus, J. Austral. Math. Soc., to appear. | Zbl 0853.47010
[006] [7] R. deLaubenfels, d/dx, on C[0,1], is scalar, Proc. Amer. Math. Soc. 103 (1988), 215-221.
[007] [8] R. deLaubenfels, Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform, Studia Math. 103 (1992), 143-159. | Zbl 0811.47012
[008] [9] R. deLaubenfels, Regularized functional calculi and evolution equations, in: Proceedings of Evolution Equations Conference, Baton Rouge 1993, Marcel Dekker, 1994, 141-152.
[009] [10] R. deLaubenfels, A functional calculus approach to semigroups of operators, in: Seminar Notes in Functional Analysis and PDEs, Louisiana State University, 1993/94, 83-107.
[010] [11] R. deLaubenfels, H. Emamirad and M. Jazar, Regularized scalar operators, Appl. Math. Lett., to appear.
[011] [12] R. deLaubenfels and S. Kantorovitz, The semi-simplicity manifold for arbitrary Banach spaces, J. Funct. Anal. 113 (1995), 138-167. | Zbl 0867.47028
[012] [13] I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.
[013] [14] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978. | Zbl 0384.47001
[014] [15] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Interscience, New York, 1971.
[015] [16] I. Erdelyi and S. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge, 1985. | Zbl 0577.47035
[016] [17] J. E. Galé and T. Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, preprint, 1995. | Zbl 0897.43002
[017] [18] J. A. Goldstein, Semigroups of Operators and Applications, Oxford, New York, 1985.
[018] [19] R. Lange and B. Nagy, Semigroups and scalar-type operators in Banach spaces, J. Funct. Anal. 119 (1994), 468-480. | Zbl 0812.47039
[019] [20] R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Soc., Providence, 1992. | Zbl 0765.47009
[020] [21] F. Neubrander and B. Hennig, On representations, inversions and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), 151-170. | Zbl 0791.44002
[021] [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[022] [23] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.
[023] [24] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. | Zbl 0060.24801
[024] [25] F. H. Vasilescu, Analytic Functional Calculus and Spectral Decomposition, Reidel, Dordrecht, 1982. | Zbl 0495.47013
[025] [26] S. Zaidman, On the representation of vector-valued functions by Laplace transforms, Duke Math. J. 26 (1959), 189-191. | Zbl 0084.32801