Spectral projections, semigroups of operators, and the Laplace transform
deLaubenfels, Ralph
Banach Center Publications, Tome 38 (1997), p. 193-204 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208628
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm,
     author = {deLaubenfels, Ralph},
     title = {Spectral projections, semigroups of operators, and the Laplace transform},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {193-204},
     zbl = {0904.47014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm}
}
deLaubenfels, Ralph. Spectral projections, semigroups of operators, and the Laplace transform. Banach Center Publications, Tome 38 (1997) pp. 193-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p193bwm/

[000] [1] E. Albrecht and W. J. Ricker, Local spectral properties of constant coefficient differential operators in Lp(n), J. Operator Theory 24 (1990), 85-103. | Zbl 0790.47025

[001] [2] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001

[002] [3] E. Berkson, T. A. Gillespie and S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. 53 (1986), 489-517. | Zbl 0609.47042

[003] [4] K. Boyadzhiev and R. deLaubenfels, Spectral theorem for generators of strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.

[004] [5] I. Colojoara and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. | Zbl 0189.44201

[005] [6] M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc., to appear. | Zbl 0853.47010

[006] [7] R. deLaubenfels, d/dx, on C[0,1], is C1 scalar, Proc. Amer. Math. Soc. 103 (1988), 215-221.

[007] [8] R. deLaubenfels, Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform, Studia Math. 103 (1992), 143-159. | Zbl 0811.47012

[008] [9] R. deLaubenfels, Regularized functional calculi and evolution equations, in: Proceedings of Evolution Equations Conference, Baton Rouge 1993, Marcel Dekker, 1994, 141-152.

[009] [10] R. deLaubenfels, A functional calculus approach to semigroups of operators, in: Seminar Notes in Functional Analysis and PDEs, Louisiana State University, 1993/94, 83-107.

[010] [11] R. deLaubenfels, H. Emamirad and M. Jazar, Regularized scalar operators, Appl. Math. Lett., to appear.

[011] [12] R. deLaubenfels and S. Kantorovitz, The semi-simplicity manifold for arbitrary Banach spaces, J. Funct. Anal. 113 (1995), 138-167. | Zbl 0867.47028

[012] [13] I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.

[013] [14] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978. | Zbl 0384.47001

[014] [15] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Interscience, New York, 1971.

[015] [16] I. Erdelyi and S. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge, 1985. | Zbl 0577.47035

[016] [17] J. E. Galé and T. Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, preprint, 1995. | Zbl 0897.43002

[017] [18] J. A. Goldstein, Semigroups of Operators and Applications, Oxford, New York, 1985.

[018] [19] R. Lange and B. Nagy, Semigroups and scalar-type operators in Banach spaces, J. Funct. Anal. 119 (1994), 468-480. | Zbl 0812.47039

[019] [20] R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Soc., Providence, 1992. | Zbl 0765.47009

[020] [21] F. Neubrander and B. Hennig, On representations, inversions and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), 151-170. | Zbl 0791.44002

[021] [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

[022] [23] D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.

[023] [24] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. | Zbl 0060.24801

[024] [25] F. H. Vasilescu, Analytic Functional Calculus and Spectral Decomposition, Reidel, Dordrecht, 1982. | Zbl 0495.47013

[025] [26] S. Zaidman, On the representation of vector-valued functions by Laplace transforms, Duke Math. J. 26 (1959), 189-191. | Zbl 0084.32801