Let σ=(λ1,...,λn) be the spectrum of a nonnegative real n × n matrix. It is shown that σ is the spectrum of a nonnegative real n × n matrix having at most nonzero entries.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm, author = {Laffey, Thomas}, title = {A sparsity result on nonnegative real matrices with given spectrum}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {187-191}, zbl = {0877.15025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm} }
Laffey, Thomas. A sparsity result on nonnegative real matrices with given spectrum. Banach Center Publications, Tome 38 (1997) pp. 187-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm/
[000] [1] M. Boyle, Symbolic dynamics and matrices, in: Combinatorial and Graph-Theoretical Problems in Linear Algebra (eds. Brualdi, Friedland and Klee), IMA Vol. Math. Appl. 50 (1993), 1-38. | Zbl 0844.58023
[001] [2] D. Handelman, Spectral radii of primitive integral companion matrices and log concave polynomials, in: Symbolic dynamics and its applications, Contemp. Math. 135 (1992), 231-238. | Zbl 0771.12002
[002] [3] C. R. Johnson, Row stochastic matrices that are similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), 113-120. | Zbl 0455.15019
[003] [4] R. Loewy and D. London, A note on the inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978), 83-90. | Zbl 0376.15006
[004] [5] T. J. Laffey, Inverse eigenvalue problem for matrices, to appear in Hamilton Conference Proceedings, Royal Irish Academy. | Zbl 1280.15005
[005] [6] R. Reams, Topics in Matrix Theory, Thesis presented for the degree of Ph.D., National University of Ireland, 1994.