A sparsity result on nonnegative real matrices with given spectrum
Laffey, Thomas
Banach Center Publications, Tome 38 (1997), p. 187-191 / Harvested from The Polish Digital Mathematics Library

Let σ=(λ1,...,λn) be the spectrum of a nonnegative real n × n matrix. It is shown that σ is the spectrum of a nonnegative real n × n matrix having at most (n+1)2/2-1 nonzero entries.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:208627
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm,
     author = {Laffey, Thomas},
     title = {A sparsity result on nonnegative real matrices with given spectrum},
     journal = {Banach Center Publications},
     volume = {38},
     year = {1997},
     pages = {187-191},
     zbl = {0877.15025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm}
}
Laffey, Thomas. A sparsity result on nonnegative real matrices with given spectrum. Banach Center Publications, Tome 38 (1997) pp. 187-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p187bwm/

[000] [1] M. Boyle, Symbolic dynamics and matrices, in: Combinatorial and Graph-Theoretical Problems in Linear Algebra (eds. Brualdi, Friedland and Klee), IMA Vol. Math. Appl. 50 (1993), 1-38. | Zbl 0844.58023

[001] [2] D. Handelman, Spectral radii of primitive integral companion matrices and log concave polynomials, in: Symbolic dynamics and its applications, Contemp. Math. 135 (1992), 231-238. | Zbl 0771.12002

[002] [3] C. R. Johnson, Row stochastic matrices that are similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), 113-120. | Zbl 0455.15019

[003] [4] R. Loewy and D. London, A note on the inverse problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978), 83-90. | Zbl 0376.15006

[004] [5] T. J. Laffey, Inverse eigenvalue problem for matrices, to appear in Hamilton Conference Proceedings, Royal Irish Academy. | Zbl 1280.15005

[005] [6] R. Reams, Topics in Matrix Theory, Thesis presented for the degree of Ph.D., National University of Ireland, 1994.