The aim of this paper is to give a very brief account of some applications of the method of unitary extensions of isometries to interpolation and extension problems.
@article{bwmeta1.element.bwnjournal-article-bcpv38i1p17bwm, author = {Arocena, Rodrigo}, title = {Unitary extensions of isometries, generalized interpolation and band extensions}, journal = {Banach Center Publications}, volume = {38}, year = {1997}, pages = {17-23}, zbl = {0884.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p17bwm} }
Arocena, Rodrigo. Unitary extensions of isometries, generalized interpolation and band extensions. Banach Center Publications, Tome 38 (1997) pp. 17-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv38i1p17bwm/
[000] [AF] R. Arocena and F. Montans, On a general bidimensional extrapolation problem, Colloq. Math. 64 (1993), 3-12. | Zbl 0818.47010
[001] [A.1] R. Arocena, Schur analysis of a class of translation invariant forms, in: Analysis and Partial Differential Equations: A Collection of Papers dedicated to Mischa Cotlar, C. Sadosky (ed.), Marcel Dekker, New York and Basel, 1990. | Zbl 0703.47021
[002] [A.2] R. Arocena, Some remarks on lifting and interpolation problems, Rev. Un. Mat. Argentina 37 (1991), 200-211.
[003] [A.3] R. Arocena, Unitary colligations and parametrization formulas, Ukrainian Math. J. 46 (1994), 147-154.
[004] [A.4] R. Arocena, On the Nagy-Foiaş-Parrott commutant lifting theorem, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 55-64. | Zbl 0837.47006
[005] [A.5] R. Arocena, Unitary extensions of isometries and interpolation problems: (1) dilation and lifting theorems, Publ. Mat. Uruguay 6 (1995), 137-158.
[006] [AG] D. Z. Arov and L. Z. Grossman, Scattering matrices in the theory of unitary extensions of isometric operators, Soviet Math. Dokl. 27 (1983), 518-522. | Zbl 0543.47010
[007] [DG.1] H. Dym and I. Gohberg, Extensions of kernels of Fredholm operators, J. Analyse Math. 42 (1982/83), 51-97.
[008] [DG.2] H. Dym and I. Gohberg, A new class of contractive interpolants and maximun entropy principles, in: Oper. Theory Adv. Appl. 29, Birkhäuser, 1988, 117-150.
[009] [FF] C. Foiaş and A. E. Frazho, The Commutant Lifting Approach to Interpolation Problems, Birkhäuser, Basel, 1990. | Zbl 0718.47010
[010] [FFG] C. Foiaş, A. E. Frazho and I. Gohberg, Central intertwining lifting, maximum entropy and their permanence, Integral Equations Operator Theory 18 (1994), 166-201. | Zbl 0812.47013
[011] [GKW.1] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, The band method for positive and contractive extension problems, J. Operator Theory 22 (1989), 109-115. | Zbl 0697.46022
[012] [GKW.2] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, The band method for positive and contractive extension problems. An alternative version and new applications, Integral Equations Operator Theory 12 (1989), 343-382. | Zbl 0676.46043
[013] [GKW.3] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, A maximum entropy principle in the general framework of the band method, J. Funct. Anal. 95 (1991), 231-254. | Zbl 0728.47013
[014] [N] N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1986.
[015] [P] S. Parrott, On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem, J. Funct. Anal. 30 (1978), 311-328. | Zbl 0409.47004
[016] [S] D. Sarason, Generalized interpolation in , Trans. Amer. Math. Soc. 127 (1967), 179-203. | Zbl 0145.39303
[017] [Sz.-NF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. | Zbl 0201.45003