Integrable system of the heat kernel associated with logarithmic potentials
Aomoto, Kazuhiko
Annales Polonici Mathematici, Tome 75 (2000), p. 51-64 / Harvested from The Polish Digital Mathematics Library

The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208376
@article{bwmeta1.element.bwnjournal-article-apmv74z1p51bwm,
     author = {Aomoto, Kazuhiko},
     title = {Integrable system of the heat kernel associated with logarithmic potentials},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {51-64},
     zbl = {0981.58021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p51bwm}
}
Aomoto, Kazuhiko. Integrable system of the heat kernel associated with logarithmic potentials. Annales Polonici Mathematici, Tome 75 (2000) pp. 51-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p51bwm/

[000] [1] L. Accardi, Vito Volterra and the development of functional analysis, in: Convegno Internazionale in memoria di Vito Volterra, Accademia Naz. dei Lincei, 1992, 151-181. | Zbl 0980.01016

[001] [2] K. Aomoto, Analytic structure of Schläfli function, Nagoya Math. J. 68 (1977), 1-16. | Zbl 0382.33010

[002] [3] K. Aomoto, Configurations and invariant Gauss-Manin connections of integrals I, II, Tokyo J. Math. 5 (1982), 249-287; 6 (1983), 1-24; Errata 22 (1999), 511-512. | Zbl 0524.32005

[003] [4] K. Aomoto, Formal integrable system attached to the statistical model of two dimensional vortices, in: Proc. Taniguchi Sympos. on Stochastic Differential Equations, 1985, 23-29.

[004] [5] K. Aomoto, On some properties of the Gauss-ensemble of random matrices (integrable system), Adv. Appl. Math. 38 (1987), 385-399.

[005] [6] K. Aomoto, Hypergeometric functions, The past, today, and ... (From the complex analytic point of view), Sugaku Expositions 9 (1996), 99-116.

[006] [7] T. Hida, Brownian Motion, Springer, 1980. | Zbl 0423.60063

[007] [8] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Chap. 5, North-Holland/Kodan-sha, 1981. | Zbl 0495.60005

[008] [9] K. Ito, Wiener integral and Feynman integral, in: Proc. 4th Berkeley Sympos., 1961, 227-238. | Zbl 0135.18803

[009] [10] M. Kac, Integration in Function Spaces and Some of Its Applications, Scuola Norm. Sup., Pisa, 1980. | Zbl 0504.28015

[010] [11] P. Lévy, Problèmes Concrets d'Analyse Fonctionnelle, Gauthier-Villars, Paris, 1951. | Zbl 0043.32302

[011] [12] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston, 1991.

[012] [13] J. Milnor, The Schläfli differential equality, in: Collected Papers I: Geometry, Publish or Perish, Houston, TX, 1994, 281-295.

[013] [14] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer, 1992.

[014] [15] L. Schläfli, On the multiple integral ∫∫...∫ whose limits are p1=a1x+b1y+...+h1z0 and x2+y2+...+z2=1, Quart. J. Math. 3 (1860), 54-68, 97-108.

[015] [16] S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab. 15 (1987), 1-39. | Zbl 0633.60077