On the stability of solutions of nonlinear parabolic differential-functional equations
Stanisław Brzychczy
Annales Polonici Mathematici, Tome 63 (1996), p. 155-165 / Harvested from The Polish Digital Mathematics Library

We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x)     for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x)     for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0  for x ∈ G, ⎨z(x) = h(x)    for x ∈ ∂G ⎩ where x=(x,...,xm)Gm, G is an open and bounded domain with C2+α (0 < α ≤ 1) boundary, the operator     Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is uniformly elliptic in G̅ and z is a real Lp(G) function. The purpose of this paper is to give some conditions which will guarantee that the parabolic problem has a stable solution. Basing on the results obtained in [7] and [5, 6], we prove that the limit of the solution of the parabolic problem (1) as t → ∞ is the solution of the associated elliptic problem (2), obtained by the monotone iterative method. The problem of stability of solutions of the parabolic differential equation has been studied by D. H. Sattinger [14, 15], H. Amann [3, 4], O. Diekmann and N. M. Temme [8], and J. Smoller [17]. Our results generalize these papers to encompass the case of differential-functional equations. Differential-functional equations arise frequently in applied mathematics. For example, equations of this type describe the heat transfer processes and the prediction of ground water level.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262858
@article{bwmeta1.element.bwnjournal-article-apmv63z2p155bwm,
     author = {Stanis\l aw Brzychczy},
     title = {On the stability of solutions of nonlinear parabolic differential-functional equations},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {155-165},
     zbl = {0861.35127},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p155bwm}
}
Stanisław Brzychczy. On the stability of solutions of nonlinear parabolic differential-functional equations. Annales Polonici Mathematici, Tome 63 (1996) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p155bwm/

[00000] [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[00001] [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. | Zbl 0093.10401

[00002] [3] H. Amman, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.

[00003] [4] H. Amman, Supersolutions, monotone iterations and stability, J. Differential Equations 21 (1976), 363-377. | Zbl 0319.35039

[00004] [5] S. Brzychczy, Approximate iterative method and the existence of solutions of nonlinear parabolic differential-functional equations, Ann. Polon. Math. 42 (1983), 37-43. | Zbl 0537.35044

[00005] [6] S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian). | Zbl 0613.35041

[00006] [7] S. Brzychczy, Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type, Ann. Polon. Math. 58 (1993), 139-146. | Zbl 0787.35114

[00007] [8] O. Diekmann and N. M. Temme, Nonlinear Diffusion Problems, MC Syllabus 28, Mathematisch Centrum, Amsterdam, 1982.

[00008] [9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903

[00009] [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. | Zbl 0562.35001

[00010] [11] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, Moscow, 1956 (in Russian); English transl.: Macmillan, New York, 1964.

[00011] [12] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Monographs Adv. Texts and Surveys in Pure and Appl. Math. 27, Pitman, Boston, 1985.

[00012] [13] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1964 (in Russian); English transl.: Academic Press, New York, 1968.

[00013] [14] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. | Zbl 0223.35038

[00014] [15] D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Math. 309, Springer, Berlin, 1973. | Zbl 0248.35003

[00015] [16] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282. | Zbl 0008.25502

[00016] [17] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983. | Zbl 0508.35002

[00017] [18] J. Szarski, Strong maximum principle for nonlinear parabolic differential-functional inequalities, Ann. Polon. Math. 29 (1974), 207-214. | Zbl 0291.35048

[00018] [19] M. M. Vaĭnberg, Variational Methods for the Study of Nonlinear Operators, Gostekhizdat, Moscow, 1956 (in Russian); English transl.: Holden-Day, San Francisco, 1964.

[00019] [20] J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin, 1971.