Extremal selections of multifunctions generating a continuous flow
Alberto Bressan ; Graziano Crasta
Annales Polonici Mathematici, Tome 60 (1994), p. 101-117 / Harvested from The Polish Digital Mathematics Library

Let F:[0,T]×n2n be a continuous multifunction with compact, not necessarily convex values. In this paper, we prove that, if F satisfies the following Lipschitz Selection Property: (LSP) For every t,x, every y ∈ c̅o̅F(t,x) and ε > 0, there exists a Lipschitz selection ϕ of c̅o̅F, defined on a neighborhood of (t,x), with |ϕ(t,x)-y| < ε, then there exists a measurable selection f of ext F such that, for every x₀, the Cauchy problem ẋ(t) = f(t,x(t)), x(0) = x₀, has a unique Carathéodory solution, depending continuously on x₀. We remark that every Lipschitz multifunction with compact values satisfies (LSP). Another interesting class for which (LSP) holds consists of those continuous multifunctions F whose values are compact and have convex closure with nonempty interior.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:262467
@article{bwmeta1.element.bwnjournal-article-apmv60z2p101bwm,
     author = {Alberto Bressan and Graziano Crasta},
     title = {Extremal selections of multifunctions generating a continuous flow},
     journal = {Annales Polonici Mathematici},
     volume = {60},
     year = {1994},
     pages = {101-117},
     zbl = {0816.34009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv60z2p101bwm}
}
Alberto Bressan; Graziano Crasta. Extremal selections of multifunctions generating a continuous flow. Annales Polonici Mathematici, Tome 60 (1994) pp. 101-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv60z2p101bwm/

[00000] [1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.

[00001] [2] A. Bressan, Directionally continuous selections and differential inclusions, Funkcial. Ekvac. 31 (1988), 459-470. | Zbl 0676.34014

[00002] [3] A. Bressan, On the qualitative theory of lower semicontinuous differential inclusions, J. Differential Equations 77 (1989), 379-391. | Zbl 0675.34011

[00003] [4] A. Bressan, The most likely path of a differential inclusion, ibid. 88 (1990), 155-174. | Zbl 0736.34013

[00004] [5] A. Bressan, Selections of Lipschitz multifunctions generating a continuous flow, Differential Integral Equations 4 (1991), 483-490. | Zbl 0722.34009

[00005] [6] A. Bressan and G. Colombo, Boundary value problems for lower semicontinuous differential inclusions, Funkcial. Ekvac. 36 (1993), 359-373. | Zbl 0788.34007

[00006] [7] A. Cellina, On the set of solutions to Lipschitzean differential inclusions, Differential Integral Equations 1 (1988), 495-500. | Zbl 0723.34009

[00007] [8] F. S. De Blasi and G. Pianigiani, On the solution set of nonconvex differential inclusions, J. Differential Equations, to appear. | Zbl 0853.34013

[00008] [9] F. S. De Blasi and G. Pianigiani, Topological properties of nonconvex differential inclusions, Nonlinear Anal. 20 (1993), 871-894. | Zbl 0774.34010

[00009] [10] A. LeDonne and M. V. Marchi, Representation of Lipschitz compact convex valued mappings, Atti Accad. Naz. Lincei Rend. 68 (1980), 278-280. | Zbl 0481.54011

[00010] [11] A. F. Filippov, On certain questions in the theory of optimal control, SIAM J. Control Optim. 1 (1962), 76-84. | Zbl 0139.05102

[00011] [12] A. Ornelas, Parametrization of Carathéodory multifunctions, Rend. Sem. Mat. Univ. Padova 83 (1990), 33-44. | Zbl 0708.28005

[00012] [13] A. A. Tolstonogov, Extreme continuous selectors of multivalued maps and their applications, preprint, 1992.