Some subclasses of close-to-convex functions
Adam Lecko
Annales Polonici Mathematici, Tome 58 (1993), p. 53-64 / Harvested from The Polish Digital Mathematics Library

For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes Cβ(α) defined as follows: a function f regular in U = z: |z| < 1 of the form f(z)=z+n=1anzn, z ∈ U, belongs to the class Cβ(α) if Reeiβ(1-α²z²)f'(z)<0 for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in Cβ(α) are examined.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:262387
@article{bwmeta1.element.bwnjournal-article-apmv58z1p53bwm,
     author = {Adam Lecko},
     title = {Some subclasses of close-to-convex functions},
     journal = {Annales Polonici Mathematici},
     volume = {58},
     year = {1993},
     pages = {53-64},
     zbl = {0776.30011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p53bwm}
}
Adam Lecko. Some subclasses of close-to-convex functions. Annales Polonici Mathematici, Tome 58 (1993) pp. 53-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv58z1p53bwm/

[000] [1] H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatsh. Math. 80 (4) (1975), 257-264. | Zbl 0314.30012

[001] [2] I. M. Gal'perin, The theory of univalent functions with bounded rotation, Izv. Vyssh. Ucheb. Zaved. Mat. 1958 (3) (4), 50-61 (in Russian).

[002] [3] A. W. Goodman and E. B. Saff, On the definition of a close-to-convex function, Internat. J. Math. and Math. Sci. 1 (1978), 125-132. | Zbl 0383.30005

[003] [4] W. Hengartner and G. Schober, On schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970), 303-314. | Zbl 0203.07604

[004] [5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. | Zbl 0048.31101

[005] [6] A. Lecko, On some classes of close-to-convex functions, Fol. Sci. Univ. Tech. Resov. 60 (1989), 61-70. | Zbl 0721.30008

[006] [7] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. | Zbl 0106.04805

[007] [8] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133. | Zbl 0195.36401

[008] [9] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934-1935), 129-155. | Zbl 0010.26305

[009] [10] L. Špaček, Contribution à la theorie des fonctions univalentes, Časopis Pěst. Mat. 2 (1932), 12-19. | Zbl 58.0365.04

[010] [11] J. Stankiewicz and J. Waniurski, Some classes of functions subordinate to linear transformation and their applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 85-94.

[011] [12] S. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340. | Zbl 0014.26707