Lp-Lq-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity
Jerzy Gawinecki
Annales Polonici Mathematici, Tome 55 (1991), p. 135-145 / Harvested from The Polish Digital Mathematics Library

We prove the Lp-Lq-time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the Lp-Lq-time decay estimates.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262394
@article{bwmeta1.element.bwnjournal-article-apmv54z2p135bwm,
     author = {Jerzy Gawinecki},
     title = {$L^p$-$L^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {135-145},
     zbl = {0732.73001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p135bwm}
}
Jerzy Gawinecki. $L^p$-$L^q$-Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity. Annales Polonici Mathematici, Tome 55 (1991) pp. 135-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p135bwm/

[000] [1] R. Adams, Sobolev Spaces, Academic Press, New York 1975.

[001] [2] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392. | Zbl 0059.08902

[002] [3] Yu. V. Egorov, Linear Differential Equations of Principal Type, Nauka, Moscow 1984 (in Russian).

[003] [4] J. Gawinecki, Matrix of fundamental solutions for the system of equations of hyperbolic thermoelasticity with two relaxation times and solution of the Cauchy problem, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 1988 (in print). | Zbl 0698.73003

[004] [5] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43-101. | Zbl 0405.35056

[005] [6] S. Klainerman, Long-time behaviour of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal. 78 (1982), 72-98. | Zbl 0502.35015

[006] [7] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133-141. | Zbl 0509.35009

[007] [8] J. L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris 1968. | Zbl 0165.10801

[008] [9] A. Piskorek, Fourier and Laplace transformation with their applications, Warsaw University, 1988 (in Polish).

[009] [10] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (1982), 409-425. | Zbl 0518.35046

[010] [11] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, 3th ed. Nauka, Moscow 1988 (in Russian). | Zbl 0662.46001

[011] [12] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-113. | Zbl 0466.47006

[012] [13] E. S. Suhubi, Thermoelastic solids, in: Continuum Physics, A. C. Eringen (ed.), Academic Press, New York 1975.

[013] [14] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag der Wissenschaften, Berlin 1978. | Zbl 0387.46033