Modeling heat distribution with the use of a non-integer order, state space model
Krzysztof Oprzędkiewicz ; Edyta Gawin ; Wojciech Mitkowski
International Journal of Applied Mathematics and Computer Science, Tome 26 (2016), p. 749-756 / Harvested from The Polish Digital Mathematics Library

A new, state space, non-integer order model for the heat transfer process is presented. The proposed model is based on a Feller semigroup one, the derivative with respect to time is expressed by the non-integer order Caputo operator, and the derivative with respect to length is described by the non-integer order Riesz operator. Elementary properties of the state operator are proven and a formula for the step response of the system is also given. The proposed model is applied to the modeling of temperature distribution in a one dimensional plant. Results of experiments show that the proposed model is more accurate than the analogical integer order model in the sense of the MSE cost function.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287171
@article{bwmeta1.element.bwnjournal-article-amcv26i4p749bwm,
     author = {Krzysztof Oprz\k edkiewicz and Edyta Gawin and Wojciech Mitkowski},
     title = {Modeling heat distribution with the use of a non-integer order, state space model},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {26},
     year = {2016},
     pages = {749-756},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv26i4p749bwm}
}
Krzysztof Oprzędkiewicz; Edyta Gawin; Wojciech Mitkowski. Modeling heat distribution with the use of a non-integer order, state space model. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) pp. 749-756. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv26i4p749bwm/

[000] Almeida, R. and Torres, D.F.M. (2011). Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Communications in Nonlinear Science and Numerical Simulation 16(3): 1490-1500. | Zbl 1221.49038

[001] Baeumer, B., Kurita, S. and Meerschaert, M. (2005). Inhomogeneous fractional diffusion equations, Fractional Calculus and Applied Analysis 8(4): 371-386. | Zbl 1202.86005

[002] Balachandran, K. and Divya, S. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052. | Zbl 1309.93025

[003] Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science 22(3): 523-531, doi: 10.2478/v10006-012-0039-0. | Zbl 1302.93042

[004] Bartecki, K. (2013). A general transfer function representation for a class of hyperbolic distributed parameter systems, International Journal of Applied Mathematics and Computer Science 23(2): 291-307, DOI: 10.2478/amcs-2013-0022. | Zbl 1282.93182

[005] Caponetto, R., Dongola, G., Fortuna, L. and Petras, I. (2010). Fractional, order systems: Modeling and control applications, in L.O. Chua (Ed.), World Scientific Series on Nonlinear Science, University of California, Berkeley, CA, pp. 1-178.

[006] Curtain, R.F. and Zwart, H. (1995). An Introduction to InfiniteDimensional Linear Systems Theory, Springer-Verlag, New York, NY. | Zbl 0839.93001

[007] Das, S. (2010). Functional Fractional Calculus for System Identification and Control, Springer, Berlin.

[008] Dlugosz, M. and Skruch, P. (2015). The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics 1(1): 1-13.

[009] Dzielinski, A., Sierociuk, D. and Sarwas, G. (2010). Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 583-592. | Zbl 1220.80006

[010] Evans, K.P. and Jacob, N. (2007). Feller semigroups obtained by variable order subordination, Revista Matematica Complutense 20(2): 293-307. | Zbl 1153.47033

[011] Gal, C. and Warma, M. (2016). Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions, Evolution Equations and Control Theory 5(1): 61-103. | Zbl 1349.35412

[012] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin. | Zbl 1221.93002

[013] Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277-283, DOI: 10.1515/amcs-2016-0019. | Zbl 1347.93062

[014] Kaczorek, T. and Rogowski, K. (2014). Fractional Linear Systems and Electrical Circuits, Białystok University of Technology, Białystok. | Zbl 06385236

[015] Kochubei, A. (2011). Fractional-parabolic systems, arXiv: 1009.4996 [math.ap], (reprint).

[016] Mitkowski, W. (1991). Stabilization of Dynamic Systems, WNT, Warsaw, (in Polish). | Zbl 0686.93072

[017] Mitkowski, W. (2011). Approximation of fractional diffusion-wave equation, Acta Mechanica et Automatica 5(2): 65-68.

[018] N'Doye, I., Darouach, M., Voos, H. and Zasadzinski, M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491-500, DOI: 10.2478/amcs-2013-0037. | Zbl 1279.93027

[019] Obraczka, A. (2014). Control of Heat Processes with the Use of Non-integer Models, Ph.D. thesis, AGH University of Science and Technology, Kraków.

[020] Oprzedkiewicz, K. (2003). The interval parabolic system, Archives of Control Sciences 13(4): 415-430. | Zbl 1151.93368

[021] Oprzedkiewicz, K. (2004). A controllability problem for a class of uncertain parameters linear dynamic systems, Archives of Control Sciences 14(1): 85-100. | Zbl 1151.93317

[022] Oprzędkiewicz, K. (2005). An observability problem for a class of uncertain-parameter linear dynamic systems, International Journal of Applied Mathematics and Computer Science 15(3): 331-338. | Zbl 1169.93313

[023] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533-538, DOI: 10.2478/v10006-012-0040-7. | Zbl 1302.93140

[024] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY. | Zbl 0516.47023

[025] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA. | Zbl 0924.34008

[026] Popescu, E. (2010). On the fractional Cauchy problem associated with a Feller Semigroup, Mathematical Reports 12(2): 181-188. | Zbl 1224.26023

[027] Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A. and Ziubinski, P. (2015). Diffusion process modeling by using fractional-order models, Applied Mathematics and Computation 257(1): 2-11.

[028] Szekeres, B.J. and Izsak, F. (2014). Numerical solution of fractional order diffusion problems with Neumann boundary conditions, preprint, arXiv: 1411.1596, [math.NA], (preprint).

[029] Yang, Q., Liu, F. and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling 34(1): 200-218. | Zbl 1185.65200