State estimation for miso non-linear systems in controller canonical form
Benoît Schwaller ; Denis Ensminger ; Birgitta Dresp-Langley ; José Ragot
International Journal of Applied Mathematics and Computer Science, Tome 26 (2016), p. 569-583 / Harvested from The Polish Digital Mathematics Library

We propose a new observer where the model, decomposed in generalized canonical form of regulation described by Fliess, is dissociated from the part assuring error correction. The obtained stable exact estimates give direct access to state variables in the form of successive derivatives. The dynamic response of the observer converges exponentially, as long as the nonlinearities are locally of Lipschitz type. In this case, we demonstrate that a quadratic Lyapunov function provides a number of inequalities which guarantee at least local stability. A synthesis of gains is proposed, independent of the observation time scale. Simulations of a Düffing system and a Lorenz strange attractor illustrate theoretical developments.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286726
@article{bwmeta1.element.bwnjournal-article-amcv26i3p569bwm,
     author = {Beno\^\i t Schwaller and Denis Ensminger and Birgitta Dresp-Langley and Jos\'e Ragot},
     title = {State estimation for miso non-linear systems in controller canonical form},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {26},
     year = {2016},
     pages = {569-583},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv26i3p569bwm}
}
Benoît Schwaller; Denis Ensminger; Birgitta Dresp-Langley; José Ragot. State estimation for miso non-linear systems in controller canonical form. International Journal of Applied Mathematics and Computer Science, Tome 26 (2016) pp. 569-583. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv26i3p569bwm/

[000] Alma, M. and Darouach, M. (2014). Adaptive observers design for a class of linear descriptor systems, Automatica 50(2): 578-583.

[001] Bestle, D. and Zeitz, M. (1983). Canonical form observer design for non-linear time-variable systems, International Journal of Control 38(2): 419-431. | Zbl 0521.93012

[002] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot, J. (2013). State and parameter estimation for time-varying systems: A Takagi-Sugeno approach, American Control Conference (ACC), Washington, DC, USA, pp. 1050-1055.

[003] Bodizs, L., Srinivasan, B. and Bonvin, D. (2011). On the design of integral observers for unbiased output estimation in the presence of uncertainty, Journal of Process Control 21(3): 379-390.

[004] Boker, A. and Khalil, H. (2013). Nonlinear observers comprising high-gain observers and extended Kalman filters, Automatica 49(12): 3583-3590. | Zbl 1315.93020

[005] Bouraoui, I., Farza, M., Ménard, T., Abdennour, R.B., M'Saad, M. and Mosrati, H. (2015). Observer design for a class of uncertain nonlinear systems with sampled outputs: Application to the estimation of kinetic rates in bioreactors, Automatica 55: 78-87.

[006] Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423-430, DOI: 10.2478/v10006-011-0031-0. | Zbl 1234.93036

[007] Ciccarella, G., Mora, M.D. and Germani, A. (1993). A Luenberger-like observer for nonlinear systems, International Journal of Control 57(3): 537-556. | Zbl 0772.93018

[008] Efimov, D. and Fridman, L. (2011). Global sliding-mode observer with adjusted gains for locally Lipschitz systems, Automatica 47(3): 565-570. | Zbl 1216.93019

[009] Farza, M., Bouraoui, I., Ménard, T., Abdennour, R.B. and M'Saad, M. (2014). Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs, Automatica 50(11): 2951-2960. | Zbl 1300.93046

[010] Farza, M., M'Saad, M., Triki, M. and Maatoug, T. (2011). High gain observer for a class of non-triangular systems, Systems and Control Letters 60(1): 27-35. | Zbl 1207.93014

[011] Fliess, M. (1990). Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Transactions on Automatic Control 35(9): 994-1001. | Zbl 0724.93010

[012] Gauthier, J. and Bornard, G. (1981). Observability for any uÔtÕ of a class of nonlinear systems, IEEE Transactions on Automatic Control AC-26(4): 922-926. | Zbl 0553.93014

[013] Gauthier, J., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems. Applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875-880. | Zbl 0775.93020

[014] Ghosh, D., Saha, P. and Chowdhury, A. (2010). Linear observer based projective synchronization in delay Roessler system, Communications in Nonlinear Science and Numerical Simulation 15(6): 1640-1647. | Zbl 1221.34138

[015] Gille, J., Decaulne, P. and Pélegrin, M. (1988). Systèmes asservis non linéaires, 5 ième edn, Dunod, Paris. | Zbl 0189.45701

[016] Gißler, J. and Schmid, M. (1990). Vom Prozeß zur Regelung. Analyse, Entwurf, Realisierung in der Praxis, Siemens, Berlin/München.

[017] Glumineau, A. and Lôpez-Morales, V. (1999). Transformation to State Affine System and Observer Design, Lecture Notes in Control and Information Science, Vol. 244, Springer, London. | Zbl 0978.93016

[018] Guerra, T., Estrada-Manzo, V. and Lendek, Z. (2015). Observer design for Takagi-Sugeno descriptor models: An LMI approach, Automatica 52: 154-159. | Zbl 1309.93091

[019] Hermann, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728-740. | Zbl 0396.93015

[020] Krener, A. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Systems & Control Letters 3(1): 47-52. | Zbl 0524.93030

[021] Lorenz, E. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130-141.

[022] Luenberger, D. (1966). Observers for multivariable systems, IEEE Transactions on Automatic Control AC-11(2): 190-197.

[023] Martínez-Guerra, R., Mata-Machuca, J., Aguilar-López, R. and Rodríguez-Bollain, A. (2011). Applications of Chaos and Nonlinear Dynamics in Engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg.

[024] Mazenc, F. and Dinh, T. (2014). Construction of interval observers for continuous-time systems with discrete measurements, Automatica 50(10): 2555-2560. | Zbl 1301.93034

[025] Menini, L. and Tornambè, A. (2011). Design of state detectors for nonlinear systems using symmetries and semi-invariants, Systems and Control Letters 60(2): 128-137. | Zbl 1209.93033

[026] Mobki, H., Sadeghia, M. and Rezazadehb, G. (2015). Design of direct exponential observers for fault detection of nonlinear MEMS tunable capacitor, IJE Transactions A: Basics 28(4): 634-641.

[027] Morales, A. and Ramirez, J. (2002). A PI observer for a class of nonlinear oscillators, Physics Letters A 297(3-4): 205-209. | Zbl 0995.65057

[028] Raghavan, S. and Hedrick, J. (1994). Observer design for a class of nonlinear systems, International Journal of Control 59(2): 515-528. | Zbl 0802.93007

[029] Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539-556, DOI: 10.2478/amcs-2013-0041. | Zbl 1279.93101

[030] Röbenack, K. and Lynch, A. (2004). An efficient method for observer design with approximately linear error dynamics, International Journal of Control 77(7): 607-612. | Zbl 1062.93008

[031] Röbenack, K. and Lynch, A.F. (2006). Observer design using a partial nonlinear observer canonical form, International Journal of Applied Mathematics and Computer Science 16(3): 333-343. | Zbl 1136.93313

[032] Schwaller, B., Ensminger, D., Dresp-Langley, B. and Ragot, J. (2013). State estimation for a class of nonlinear systems, International Journal of Applied Mathematics and Computer Science 23(2): 383-394, DOI: 10.2478/amcs-2013-0029. | Zbl 1282.93247

[033] Söffker, D., Yu, T. and Müller, P. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observers, International Journal of Systems Science 26(9): 1571-1582. | Zbl 0830.93009

[034] Thabet, R., Raïssi, T., Combastel, C., Efimov, D. and Zolghadri, A. (2014). An effective method to interval observer design for time-varying systems, Automatica 50(10): 2677-2684. | Zbl 1301.93035

[035] Tornambè, A. (1992). High-gain observers for non-linear systems, International Journal of Systems Science 23(9): 1475-1489. | Zbl 0768.93013

[036] Tyukina, I., Steurb, E., Nijmeijerc, H. and van Leeuwenb, C. (2013). Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters, Automatica 49(8): 24092423.

[037] Veluvolu, K., Soh, Y. and Cao, W. (2007). Robust observer with sliding mode estimation for nonlinear uncertain systems, IET Control Theory and Applications 1(5): 15331540. | Zbl 1134.93032

[038] Zeitz, M. (1985). Canonical forms for nonlinear-systems, in B. Jakubczyk et al. (Eds.), Proceedings of the Conference on Geometric Theory of Nonlinear Control Systems, Wrocław Technical University Press, Wrocław, pp. 255-278. | Zbl 0593.93011

[039] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters Archive 9(2): 149-156. | Zbl 0624.93012

[040] Zheng, G., Boutat, D. and Barbot, J. (2009). Multi-output dependent observability normal form, Nonlinear Analysis: Theory, Methods and Applications 70(1): 404-418. | Zbl 1152.93015