Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains
Piotr Ostalczyk
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 533-538 / Harvested from The Polish Digital Mathematics Library

Two description forms of a linear fractional-order discrete system are considered. The first one is by a fractional-order difference equation, whereas the second by a fractional-order state-space equation. In relation to the two above-mentioned description forms, stability domains are evaluated. Several simulations of stable, marginally stable and unstable unit step responses of fractional-order systems due to different values of system parameters are presented.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:244067
@article{bwmeta1.element.bwnjournal-article-amcv22z3p533bwm,
     author = {Piotr Ostalczyk},
     title = {Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {533-538},
     zbl = {1302.93140},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22z3p533bwm}
}
Piotr Ostalczyk. Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 533-538. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22z3p533bwm/

[000] Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibration and Control 14(9/10): 1543-1556. | Zbl 1229.93143

[001] Guermah, S., Djennoune, S. and Bettayeb, M. (2010). A new approach for stability analysis of linear discrete-time fractional-order systems, in D. Baleanu, Z. Güvenç and J.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dodrecht, pp. 151-162. | Zbl 1206.93095

[002] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin. | Zbl 1221.93002

[003] Kailath, S. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ. | Zbl 0454.93001

[004] Matignon, D. (1996). Stability results for fractional differential eqations with applications to control processing, Computational Engineering in Systems and Application Multiconference, Lille, France, pp. 963-968.

[005] Miller, K. and Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY. | Zbl 0789.26002

[006] Ogata, K. (1987). Discrete Control Systems, Prentice-Hall, Englewood Cliffs, NJ.

[007] Oldham, K. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY. | Zbl 0292.26011

[008] Ostalczyk, P. (2008). Epitome of Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).

[009] Oustaloup, A. (1991). La commande CRONE, Éditions Hermès, Paris.

[010] Oustaloup, A. (1995). La derivation non entière: thèorie, syntheses et applications, Éditions Hermès, Paris.

[011] Oustaloup, A. (1999). La commande crone: du scalaire au multivariable, Éditions Hermès, Paris.

[012] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY. | Zbl 0924.34008

[013] Samko, A. Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London. | Zbl 0818.26003

[014] Valério, D. and Costa, S. (2006). Tuning of fractional PID controllers with Ziegler-Nichols-type rules, Signal Processing 86(10): 2771-2784. | Zbl 1172.94496