A mixed active and passive GLR test for a fault tolerant control system
Hicham Jamouli ; Mohamed Amine El Hail ; Dominique Sauter
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 9-23 / Harvested from The Polish Digital Mathematics Library

This paper presents an adaptive Generalized Likelihood Ratio (GLR) test for multiple Faults Detection and Isolation (FDI) in stochastic linear dynamic systems. Based on the work of Willsky and Jones (1976), we propose a modified generalized likelihood ratio test, allowing detection, isolation and estimation of multiple sequential faults. Our contribution aims to maximise the good decision rate of fault detection using another updating strategy. This is based on a reference model updated on-line after each detection and isolation of one fault. To reduce the computational requirement, the passive GLR test will be derived from a state estimator designed on a fixed reference model directly sensitive to system changes. We will show that active and passive GLR tests will be mixed and give interesting results compared with the GLR of Willsky and Jones (1976), and that they can be easily integrated in a reconfigurable Fault-Tolerant Control System (FTCS) to asymptotically recover the nominal system performances of the jump-free system.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:208104
@article{bwmeta1.element.bwnjournal-article-amcv22i1p9bwm,
     author = {Hicham Jamouli and Mohamed Amine El Hail and Dominique Sauter},
     title = {A mixed active and passive GLR test for a fault tolerant control system},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {9-23},
     zbl = {1276.93079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p9bwm}
}
Hicham Jamouli; Mohamed Amine El Hail; Dominique Sauter. A mixed active and passive GLR test for a fault tolerant control system. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 9-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p9bwm/

[000] Aubrun, C., Sauter, D., Noura, H. and Robert, M. (1993). Fault diagnosis and reconfiguration of systems using fuzzy logic: Application to a thermal plant treatment process, International Journal of System Sciences 24(10): 1945-1954.

[001] Balle, P., Fisher, M., Fussel, D., Nelles, O. and Isermann, A. (1998). Integrated control diagnosis and reconfiguration of a heat exchanger, IEEE Control System Magazine 18(3): 52-64.

[002] Basseville, M. and Nikiforov, I. (1994). Detection of Abrupt Changes Theory and Application, Prentice Hall, Englewood Cliffs, NJ.

[003] Basseville, M., and Benveniste, A., (1983). Design and comparative study of some sequential jump detection algorithms for digital signal, IEEE Transactions on Acoustics, Speech, Signal Processing 31(3): 521-534.

[004] Beard, R.V. (1971). Failure Accommodation in Linear Systems Through Self-Reorganisation, Ph.D thesis, Massachusetts Institute of Technology Cambridge, MA,USA.

[005] Bodson, M., and Groszkiewicz, J., (1997). Multivariable adaptive algorithms for reconfigurable flight control, IEEE Transactions on Control Systems Technology 5(2): 217-229.

[006] Caglayan, A.K. (1980). Necessary and sufficient conditions for detectability of jumps in linear systems, IEEE Transactions on Automatic Control 25: 833-834. | Zbl 0444.93018

[007] Caglayan, A.K., Allen, S.M. and Whmuller, K. (1988). Evaluation of second generation reconfiguration strategy for aircraft flight control systems subject to actuator failure/surface damage, Proceeding of the IEEE National Aerospace and Electronics Conference, New York, NY, USA, pp. 520-529.

[008] Chen, R.H., and Speyer, J.L. (2002). Robust multiple fault detection filter, International Journal of Robust and Nonlinear Control 12(8): 675-696. | Zbl 1032.93017

[009] Chow, E., Dumn, K.P. and Willsky, A.S. (1975). A Game Theoretic Fault Detection Filter, MIT Electronic Systems Laboratory, Cambridge, MA.

[010] Deckert, J.C., Desai, M.N., Deyst, J.J. and Willsky, A.S. (1977). F8-DFBW sensor failure identification using analytical redundancy, IEEE Transactions on Automatic Control 22(5): 795-803.

[011] Chung, W.H., and Speyer, J.L. (1998). A game theoretic fault detection filter, IEEE Transactions on Automatic Control 43(2): 143-161. | Zbl 0907.93056

[012] D'Azzo, J. and Houpis, C.H (1995). Linear Control System Analysis and Design, Conventional and Modern, McGrawHill Series in Electrical and Computer Engineering, New York, NY.

[013] Freidland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions on Automatic Control 14(4): 359-367.

[014] Gao, Z., and Antsaklis, P.J. (1992). Reconfigurable control system design via perfect model following, International Journal of Control 56(4): 783-798. | Zbl 0760.93027

[015] Geddes, J.E., and Poslethwaite, M., (1998). Improvements in product quality in tandem cold rolling using robust multivariable control, IEEE Transactions on Control systems 6(2): 257-269.

[016] Grimble, M.J. , and Hearns, G. (1999). Advanced control for hot rolling mills, in P.M. Frank (Ed.) Advances in Control, Highlights of ECC'99, Springer-Verlag, London, New York, NY, pp. 135-169.

[017] Gustafson, D.E., Willsky, A.S., Wang, J.Y., Lancaster, M.C., and Triebwasser, J.H. (1978). ECG/VGC rhythm diagnosis using statistical signal analysis, I: Identification of persistent rhythms, IEEE Transactions on Biomedical Engineering 25: 344-352.

[018] Huang, C.Y., and Stengel, R.F. (1990). Restructurable control using proportional-integral implicit model following, Journal of Guidance Control and Dynamic 13(2): 303-309. | Zbl 0718.93035

[019] Jamouli, H., Keller, J.Y. and Sauter, D. (2003). Fault isolation filter with unknown inputs in stochastic systems, IFAC Safeprocess'03, Washington, DC, USA, pp. 531-536.

[020] Jamouli, H. , and Sauter, D. (2007). A new adaptive Kalman estimator integrated in a fault-tolerant control system, 15th IEEE Mediterranean Conference on Control and Automation, Athens, Greece, pp. 1-6. | Zbl 1229.93096

[021] Jamouli, H. , and Sauter, D. (2008). An active generalized likelihood ratio test in a reconfigurable fault-tolerant control system, 16 IEEE Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 1786-1791.

[022] Jamouli, H. , and Sauter, D. (2010). Fault detection and isolation of sequential multiples faults in dynamic linear systems, 18th IEEE Mediterranean Conference on Control and Automation, Marrakech, Morocco, pp. 466-470. | Zbl 1229.93096

[023] Jiang, J. (1994). Design of reconfigurable control systems using eigenstructure assignment, International Journal of Control 59(2): 395-410. | Zbl 0802.93021

[024] Jones, H.L. (1973). Failure Detection in Linear Systems, Ph.D thesis, Massachusetts Institute of Technology Cambridge, Cambridge, MA.

[025] Keller, J.Y. (1999). Fault isolation filter for linear systems. Automatica 35(10): 1701-1706. | Zbl 0933.93066

[026] Koc, H., Knittel, D., Mathelin, M., and Abba, G., (2002). Modeling and control of winding systems for elastic webs, IEEE Transactions on Control Systems Technology 10(2): 197-208

[027] Knittel, D., Laroche, E., Gigan, D., and Koc, H., (2003). Tension control for winding systems with two degrees of freedom H controller, IEEE Transactions on Industry Applications 39(1): 113-120.

[028] Liu, B., and Si, J. (1997). Fault isolation filter design for time invariant systems, IEEE Transactions on Automatic Control 42(5): 704-707. | Zbl 0890.93012

[029] Looze, D.P., Weiss, J.M., Eterno, J.S. and Barret, N.M. (1985). An automatic redesign approach for control methods, IEEE Control System Magazine 5: 16-22.

[030] Massoumnia, M. (1986). A geometric approach to the synthesis of failure detection filters, IEEE Transactions on Automatic Control 31(9): 839-846. | Zbl 0599.93017

[031] Mahmoud, M. (2008). Stabilizing controllers for a class of discrete time fault tolerant control systems, ICIC Express Letters 2(3): 213-218.

[032] Mahmoud, M. (2009). Sufficient conditions for the stabilization of feedback delayed discrete time fault tolerant control systems, International Journal of Innovative Computing, Information and Control 5(5): 1137-1146.

[033] Maybeck, P.S., and Stevens, R.D. (1991). Reconfigurable flight control via multiple model adaptive control methods, IEEE Transactions on Aerospace and Electronic Systems 27(3): 470-479.

[034] Nagpal, K., Helmick, R., and Sims, C. (1987). Reduced-order estimation. Part 1: Filtering, International Journal of Control 45(6): 1867-1888. | Zbl 0624.93064

[035] Noura, H., Sauter, D., Hamelin, F. and Theilliol, D. (2000). Fault-tolerant control in dynamic systems: Application to a winding machine, IEEE Control Systems Magazine 20(1): 33-94.

[036] Patton, R., (1997). The 1997 situation (survey), IFAC SAFEPROCESS'97, Hull, UK, Vol. 2, pp. 1033-1055.

[037] Puig, V. (2010 ). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006010-0046-y. | Zbl 1214.93061

[038] Rafi, Y., and Peng, H. (2010). Piecewise sliding mode decoupling fault tolerant control system, ICIC Express Letters 4(4): 1215-1222.

[039] Rausch, H.E. (1995). Autonomous control reconfiguration, IEEE Control Systems Magazine 15(6): 37-49.

[040] Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems. International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-0070004-5. | Zbl 1122.93073

[041] Theilliol, D., Noura, H., and Sauter, D. (1998). Fault-tolerant control method for actuator and component faults, IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 604-608.

[042] Theilliol, D., Noura, H., and Ponsart, J.C. (2002). Fault diagnosis and accommodation of a three-tank-system based on analytical redundancy, ISA Transactions 41(3): 365-382.

[043] Tong, S., Wang, T., and Zhang, W. (2008). Fault tolerant control for uncertain fuzzy systems with actuator failures, International Journal of Innovative Computing, Information and Control 4(10): 2461-2474.

[044] Willsky, A.S., and Jones, H.L, (1976). A generalized likelihood ratio approach to detection and estimation of jumps in linear systems, IEEE Transactions on Automatic Control 21(1): 108-112. | Zbl 0316.93038

[045] Willsky, A.S., Chow, E.Y., Gershwin, S.B., Greene, C.S., Houptand, P.K., and Kurkjian, A.L., (1980). Dynamic model-based techniques for the detection of incidents on freeways. IEEE Transactions on Automatic Control AC25(3): 347-360. | Zbl 0497.90023

[046] Willsky, A.S. (1976). A survey of design methods for failure detection in dynamic systems, Automatica (12): 601-611. | Zbl 0345.93067

[047] Willsky, A.S. (1986). Detection of Abrupt Changes in Signals and Dynamical Systems, Lecture Notes in Control and Information Sciences, Vol. 77, Springer, New York, NY, pp. 27-49.

[048] Wu, E., Zhang, Y. and Zhou, K, (2000). Detection estimation and accommodation of loss of control effectiveness International Journal of Adaptive Control and Signal Processing 14(7): 775-795. | Zbl 1016.93025

[049] Zhao, Q., and Jiang, J., (1998). Reliable state feedback control system design against actuator failures, Automatica 34(10): 1267-1272. | Zbl 0938.93523

[050] Zaid, F.A., Ionnaou, P., Gousman, K., and Rooney, R., (1991). Accommodation of failures in the F16 aircraft using adaptive control, IEEE Control Systems Magazine 11(1): 73-84.