Probabilities of discrepancy between minima of cross-validation, Vapnik bounds and true risks
Przemysław Klęsk
International Journal of Applied Mathematics and Computer Science, Tome 20 (2010), p. 525-544 / Harvested from The Polish Digital Mathematics Library

Two known approaches to complexity selection are taken under consideration: n-fold cross-validation and structural risk minimization. Obviously, in either approach, a discrepancy between the indicated optimal complexity (indicated as the minimum of a generalization error estimate or a bound) and the genuine minimum of unknown true risks is possible. In the paper, this problem is posed in a novel quantitative way. We state and prove theorems demonstrating how one can calculate pessimistic probabilities of discrepancy between these minima for given for given conditions of an experiment. The probabilities are calculated in terms of all relevant constants: the sample size, the number of cross-validation folds, the capacity of the set of approximating functions and bounds on this set. We report experiments carried out to validate the results.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:208005
@article{bwmeta1.element.bwnjournal-article-amcv20i3p525bwm,
     author = {Przemys\l aw Kl\k esk},
     title = {Probabilities of discrepancy between minima of cross-validation, Vapnik bounds and true risks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {20},
     year = {2010},
     pages = {525-544},
     zbl = {05808467},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv20i3p525bwm}
}
Przemysław Klęsk. Probabilities of discrepancy between minima of cross-validation, Vapnik bounds and true risks. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) pp. 525-544. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv20i3p525bwm/

[000] Anthony, M. and Shawe-Taylor, J. (1993). A result of Vapnik with applications, Discrete Applied Mathematics 48(3): 207-217. | Zbl 0801.68147

[001] Bartlett, P. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network, IEEE Transactions on Information Theory 44(2): 525-536. | Zbl 0901.68177

[002] Bartlett, P., Kulkarni, S. and Posner, S. (1997). Covering numbers for real-valued function classes, IEEE Transactions on Information Theory 43(5): 1721-1724. | Zbl 0947.26008

[003] Bartlett, P. and Tewari, A. (2007). Sample complexity of policy search with known dynamics, Advances in Neural Information Processing Systems 19: 97-104.

[004] Berry, A. (1941). The accuracy of the Gaussian approximation to the sum of independent variates, Transactions of the American Mathematical Society 49(1): 122-136. | Zbl 0025.34603

[005] Bousquet, L., Boucheron S. and Lugosi G. (2004). Introduction to Statistical Learning Theory, Advanced Lectures in Machine Learning, Springer, Heidelberg, pp. 169-207. | Zbl 1120.68428

[006] Cherkassky, V. and Mulier, F. (1998). Learning from Data, John Wiley & Sons, Hoboken, NJ. | Zbl 0960.62002

[007] DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability, Springer, New York, NY. | Zbl 1154.62001

[008] Devroye, L., Gyorfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, NY. | Zbl 0853.68150

[009] Efron, B. and Tibshirani, R. (1993). An Introduction to Bootstrap, Chapman & Hall, London. | Zbl 0835.62038

[010] Esséen, C. (1942). On the Liapounoff limit of error in the theory of probability, Arkiv fdr Matematik, Astronomi och Fysik 28A(9): 1-19. | Zbl 0027.33902

[011] Esséen, C. (1956). A moment inequality with an application to the central limit theorem, Skand. Aktuarietidskr. 39: 160-170. | Zbl 0078.31502

[012] Fu, W., Caroll, R. and Wang, S. (2005). Estimating misclassification error with small samples via bootstrap crossvalidation, Bioinformatics 21(9): 1979-1986.

[013] Graham, R., Knuth, D. and Patashnik, O. (2002). Matematyka konkretna (Concrete Mathematics. A Foundation for Computer Science), PWN, Warsaw.

[014] Hasterberg, T., Choi, N. H., Meier, L. and Fraley C. (2008). Least angle and l1 penalized regression: A review, Statistics Surveys 2: 61-93. | Zbl 1189.62070

[015] Hellman, M. and Raviv, J. (1970). Probability of error, equivocation and the Chernoff bound, IEEE Transactions on Information Theory 16(4): 368-372. | Zbl 0218.62005

[016] Hjorth, J. (1994). Computer Intensive Statistical Methods Validation, Model Selection, and Bootstrap, Chapman & Hall, London. | Zbl 0829.62001

[017] Knuth, D. (1997). The Art of Computer Programming, AddisonWesley, Reading, MA. | Zbl 0895.68055

[018] Kohavi, R. (1995). A study of cross-validation and boostrap for accuracy estimation and model selection, International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Quebec, Canada, pp. 1137-1143.

[019] Korzeń, M. and Klęsk, P. (2008). Maximal margin estimation with perceptron-like algorithm, in L. Rutkowski, R. Sche˙ rer, R. Tadeusiewicz, L.A. Zadeh and J. Zurada (Eds.), Artificial Intelligence and Soft Computing-ICAISC 2008, Lecture Notes in Artificial Intelligence, Vol. 5097, Springer, Berlin, Heidelberg, pp. 597-608.

[020] Krzyżak, A., Kohler M., and Schäfer D. (2000). Application of structural risk minimization to multivariate smoothing spline regression estimates, Bernoulli 8(4): 475-489. | Zbl 1003.62035

[021] Ng, A. (2004). Feature selection, l₁ vs. l₂ regularization, and rotational invariance, ACM International Conference on Machine Learning, Banff, Alberta, Canada, Vol. 69, pp. 78-85.

[022] Schmidt, J., Siegel, A. and Srinivasan, A. (1995). ChernoffHoeffding bounds for applications with limited independence, SIAM Journal on Discrete Mathematics 8(2): 223-250. | Zbl 0819.60032

[023] Shawe-Taylor, J., Bartlett, P., Williamson, R. and Anthony, M. (1996). A framework for structural risk minimization, COLT, ACM Press, New York, NY, pp. 68-76.

[024] Shevtsova, I. (2007). Sharpening of the upper bound of the absolute constant in the Berry-Esséen inequality, Theory of Probability and its Applications 51(3): 549-553. | Zbl 1125.60021

[025] van Beek, P. (1972). An application of Fourier methods to the problem of sharpening the Berry-Esséen inequality, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 23: 187-196. | Zbl 0238.60020

[026] Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer, New York, NY. | Zbl 0833.62008

[027] Vapnik, V. (1998). Statistical Learning Theory: Inference from Small Samples, Wiley, New York, NY.

[028] Vapnik, V. (2006). Estimation of Dependencies Based on Empirical Data, Information Science & Statistics, Springer, New York, NY. | Zbl 1118.62002

[029] Vapnik, V. and Chervonenkis, A. (1968). On the uniform convergence of relative frequencies of events to their probabilities, Doklady Akademii Nauk 9(4): 915-918. | Zbl 0247.60004

[030] Vapnik, V. and Chervonenkis, A. (1989). The necessary and sufficient conditions for the consistency of the method of empirical risk minimization, Yearbook of the Academy of Sciences of the USSR on Recognition, Classification and Forecasting, Vol. 2, pp. 217-249.

[031] Weiss, S. and Kulikowski, C. (1991). Computer Systems That Learn, Morgan Kauffman Publishers, San Francisco, CA.

[032] Zhang, T. (2002). Covering number bounds of certain regularized linear function classes, Journal of Machine Learning Research 2: 527-550. | Zbl 1007.68157