Fault diagnosis of a water for injection system using enhanced structural isolation
Morten Laursen ; Mogens Blanke ; Dilek Düştegör
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 593-603 / Harvested from The Polish Digital Mathematics Library

A water for injection system supplies chilled sterile water as a solvent for pharmaceutical products. There are ultimate requirements for the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause a loss of one or more batches of the production. Early diagnosis of faults is hence of considerable interest for this process. This study investigates the properties of multiple matchings with respect to isolability, and it suggests to explore the topologies of multiple use-modes for the process and to employ active techniques for fault isolation to enhance structural isolability of faults. The suggested methods are validated on a high-fidelity simulation of the process.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207911
@article{bwmeta1.element.bwnjournal-article-amcv18i4p593bwm,
     author = {Morten Laursen and Mogens Blanke and Dilek D\"u\c steg\"or},
     title = {Fault diagnosis of a water for injection system using enhanced structural isolation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {593-603},
     zbl = {1156.93371},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p593bwm}
}
Morten Laursen; Mogens Blanke; Dilek Düştegör. Fault diagnosis of a water for injection system using enhanced structural isolation. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 593-603. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p593bwm/

[000] Åström K. J., Albertos P., Blanke M., Isidori A., Schaufelberger W. and Sanz R. (Eds) (2001). Control of Complex Systems, Springer, London/New York, NY. | Zbl 0969.93004

[001] Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2006). Diagnosis and Fault-tolerant Control, 2nd Edition, Springer, Berlin/Heidelberg. | Zbl 1126.93004

[002] Blanke M. and Staroswiecki M. (2006). Structural design of systems with safe behaviour under single and multiplefaults, Proceedings of the 16th IFAC Symposium SAFEPROCESS, Beijing, China, pp. 511-516.

[003] Düştegör D. (2005). Structural Analysis for FDI: Algorithmic Issues, Ph.D. thesis, Université des Science et Technologies de Lille, France.

[004] Düştegör D., Cocquempot V. and Staroswiecki, M. (2004). Structural analysis for fault detection and identification: An algorithmic study, Proceedings of the 2nd Symposium on System Structure and Control (SSSC'04), Oaxaca, Mexico.

[005] Düştegör D., Frisk E., Cocquempot V., Krysander M. and Staroswiecki M. (2006). Structural analysis of fault isolability in the DAMADICS benchmark, Control Engineering Practice 14(6): 597-608.

[006] Dulmage A. L. and Mendelsohn N. S. (1959). A structure theory of bipartite graphs of finite exterior dimension, Transactions of the Royal Society of Canada, Ser. 3. 53: 1-13. | Zbl 0091.37502

[007] Dulmage A. L. and Mendelsohn N. S. (1963). Two algorithms for bipartite graphs, Journal of the Society for Industrial and Applied Mathematics. 11(1): 183-194. | Zbl 0116.40805

[008] Hopcroft J. E. and Karp R. M. (1973). An n/sup5/2 algorithm for maximal matchings in bipartite graphs, SIAM Journal on Computing 2(4): 225-231. | Zbl 0266.05114

[009] Izadi-Zamanabadi R., Blanke M. and Katebi S. (2003). Cheap diagnosis using structural modeling and fuzzy-logic based detection, Control Engineering Practice 11(4): 415-422.

[010] Izadi-Zamanabadi R. and Staroswiecki M. (2000). A structural analysis method formulation for fault-tolerant control system design, Proceedings of the 39th Conference on Decision and Control IEEE, Sydney, Australia, pp. 4901-4902.

[011] Krysander M. (2006). Design and Analysis of Diagnosis Systems Using Structural Methods, Ph.D. thesis, Linköping University, Sweden.

[012] Krysander M. and Nyberg M. (2005). Fault Isolability Prediction of Diagnostic Models, Proceedings of 16th International Workshop on Principles of Diagnosis DX-05, Pacific Grove, CA, USA.

[013] Leitold A. and Hangos K. M. (2001). Structural solvability analysis of dynamic process models, Computers and Chemical Engineering 25(11-12): 1633-1646.

[014] Niemann H. H. (2006). A setup for active fault diagnosis, IEEE Transactions on Automatic Control 51(9): 1572-1578.

[015] Nyberg M. and Frisk E. (2006). Residual generation for fault diagnosis of systems described by linear differentialalgebraic equations, IEEE Transactions on Automatic Control 51(12): 1995-2000.

[016] Staroswiecki M., Attouche S. and Assas M. L. (1999). A graphic approach for reconfigurability analysis, Proceedings of the 10th International Workshop on Principles of Diagnosis, DX'99, Loch Awe, Scotland.

[017] Staroswiecki M. and Declerck P. (1989). Analytical redundancy in nonlinear interconnected systems by means of structural analysis, Proceedings of the IFAC Symposium on Advanced Information Processing in Automatic Control, AIPAC'89, Nancy, France, pp. 23-27.

[018] Staroswiecki, M. and Gehin A. L. (2000). From control to supervision, Proceedings of the IFAC Symposium SAFEPROCESS 2000, Budapest, Hungary, Vol. 1.

[019] Unger J., Kröner A. and Marquardt, W. (1995). Structural analysis of differential-algebraic equation systems - Theory and applications, Computers and Chemical Engineering 19(8): 867-882.