Block-based physical modeling with applications in musical acoustics
Rudolf Rabenstein ; Stefan Petrausch
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 295-305 / Harvested from The Polish Digital Mathematics Library

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling, where arbitrary discrete-time state space representations can communicate via wave variables. An example in musical acoustics shows the application of block-based modeling to multidimensional physical systems.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207886
@article{bwmeta1.element.bwnjournal-article-amcv18i3p295bwm,
     author = {Rudolf Rabenstein and Stefan Petrausch},
     title = {Block-based physical modeling with applications in musical acoustics},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {295-305},
     zbl = {1176.93010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p295bwm}
}
Rudolf Rabenstein; Stefan Petrausch. Block-based physical modeling with applications in musical acoustics. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 295-305. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p295bwm/

[000] Bilbao S. (2004). Wave and Scattering Methods for Numerical Simulation, Wiley & Sons, Chichester.

[001] Fettweis A. (1971). Digital filters related to classical filter networks, Archiv für Electronik und Übertragungstechnik (International Journal of Electronics and Communications) 25: 79-89.

[002] Fettweis A. (1986). Wave digital filters: Theory and practice, Proceedings of the IEEE 74(2): 270-327.

[003] Fettweis A. (1992). Multidimensional wave digital filters for discrete-time modelling of Maxwell's equations, International Journal of Numerical Modelling, Electronic Networks, Devices, and Fields 5: 183-201.

[004] Fettweis A. (2002). The wave-digital method and some of its relativistic implications, IEEE Transactions on Circuits and Systems I 49(6): 862-868.

[005] Fettweis A. and Nitsche G. (1991). Numerical integration of partial differential equations using principles of multidimensional wave digital filters, Journal of VLSI Signal Processing 3: 7-24. | Zbl 0727.65106

[006] Fletcher N. (1993). Autonomous vibration of simple pressurecontrolled valves in gas flows, Journal of the Acoustical Society of America 93(4): 2172-2179.

[007] Fletcher N. H. and Rossing T. D. (1998). The Physics of Musical Instruments, 2nd Edn., Springer-Verlag, New York, NY. | Zbl 0898.00008

[008] Fränken D., Ochs J. and Ochs K. (2005). Generation of wave digital structures for networks containing multiport elements, IEEE Transactions on Circuits and Systems I, 52(3): 586-596.

[009] Karjalainen M. and Erkut C. (2004). Digital waveguides versus finite difference structures: Equivalence and mixed modeling, EURASIP Journal on Applied Signal Processing 2004(7): 978-989. | Zbl 1107.94349

[010] Krach B., Petrausch S. and Rabenstein R. (2004). Digital sound synthesis of brass instruments by physical modeling, Proceedings of the Conference on Digital Audio Effects (DAFx) 04, Naples, Italy, pp. 101-106.

[011] Ochs K. (2001). Passive integration methods: Fundamental theory, International Journal of Electronic Communication (AEÜ) 55(3): 153-163.

[012] Petrausch S. and Rabenstein R. (2004). A simplified design of multidimensional transfer function models, Proceedings of the International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP2004), Vienna, Austria, pp. 35-40.

[013] Petrausch S. and Rabenstein R. (2005a). Application of block based physical modeling for digital sound synthesis of brass instruments, Proceedings of the Conference on Forum Acusticum (FA 2005), Budapest, Hungary, pp. 703-708.

[014] Petrausch S. and Rabenstein R. (2005b). Interconnection of state space structures and wave digital filters, IEEE Transactions on Circuits and Systems II 52(2): 90-93.

[015] Rabenstein R. and Petrausch S. (2006). Block-based physical modeling, Proceedings of the 5th International Symposium on Mathematical Modelling (MATHMOD), Vienna, Austria, pp. 2-1-2-17. | Zbl 1176.93010

[016] Rabenstein R., Petrausch S., Sarti A., De Sanctis G., Erkhut C. and Karjalainen M. (2007). Blocked-based physical modeling for digital sound synthesis, Signal Processing Magazine 24(2): 42-54.

[017] Rabenstein R. and Trautmann L. (2003). Towards a framework for continuous and discrete multidimensional systems, International Journal of Applied Mathematics and Computer Science 13(1): 73-85. | Zbl 1043.93005

[018] Sanctis G. D., Sarti A., Scarparo G. and Tubaro S. (2005). Automatic modeling and authoring of nonlinear interactions between acoustic objects, Proceedings of 4th International Workshop on Multidimensional Systems (NDS 2005), Wuppertal, Germany. Published on CD-ROM.

[019] Sanctis G. D., Sarti A. and Tubaro S. (2003). Automatic synthesis strategies for object-based dynamical physical models in musical acoustics, Proceedings of the Conference on Digital Audio Effects (DAFx-03), London, UK, pp. DAFX-1-DAFX-6.

[020] Sarti A. and Sanctis G. D. (2006). Memory extraction from dynamic scattering junctions in wave digital structures, Signal Processing Letters 13(12): 729-732.

[021] Smith J. O. (2007). Physical audio signal processing: For virtual musical instruments and digital audio effects, Technical report, Stanford University Center for Computer Research in Music and Acoustics, available at: http://ccrma.stanford.edu/˜jos/pasp/pasp.html

[022] Smith J. O. (1998). Principles of digital waveguide models of musical instruments, in M. Kahrs and K. Brandenburg, (Eds.), Applications of Digital Signal Processing to Audio and Acoustics, Kluwer Academic Publishers, Norwell, MA, USA, pp. 417-466.

[023] Trautmann L. and Rabenstein R. (2003). Digital Sound Synthesis by Physical Modeling of Musical Instruments using Functional Transformation Models, Kluwer Academic/Plenum Publishers, Boston, MA. | Zbl 1041.94002

[024] Välimäki V., Pakarinen J., Erkut C. and Karjalainen M. (2006). Discrete time modeling of musical instruments, Reports on Progress in Physics 69(1): 1-78.

[025] Vergez C. and Rodet X. (1997). Comparison of real trumpet playing, latex model of lips and computer model, Proceedings of the 1997 International Computer Music Conference, Thessaloniki, Greece. Published on CD-ROM.

[026] Vollmer M. (2005). Automatic generation of wave digital structures for numerically integrating linear symmetric hyperbolic PDEs, Multidimensional Systems and Signal Processing 16(4): 369-396. | Zbl 1090.65123