Circular object detection using a modified Hough transform
Marcin Smereka ; Ignacy Dulęba
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 85-91 / Harvested from The Polish Digital Mathematics Library

A practical modification of the Hough transform is proposed that improves the detection of low-contrast circular objects. The original circular Hough transform and its numerous modifications are discussed and compared in order to improve both the efficiency and computational complexity of the algorithm. Medical images are selected to verify the algorithm. In particular, the algorithm is applied to localize cell nuclei of cytological smears visualized using a phase contrast microscope.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207868
@article{bwmeta1.element.bwnjournal-article-amcv18i1p85bwm,
     author = {Marcin Smereka and Ignacy Dul\k eba},
     title = {Circular object detection using a modified Hough transform},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {85-91},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i1p85bwm}
}
Marcin Smereka; Ignacy Dulęba. Circular object detection using a modified Hough transform. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 85-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i1p85bwm/

[000] Atherton T. J. and Kerbyson D. J. (1993). The coherent circle Hough transform, Proceedings of the British Machine Vision Conference, Guildford, UK, pp. 269-278.

[001] Atherton T. J. and Kerbyson D. J. (1993). Using phase to represent radius in the coherent circle Hough transform, IEE Coloquium on the Hough Transform 5: 1-4.

[002] Atherton T. J. and Kerbyson D. J. (1999). Size invariant circle detection, Image and Vision Computing 17(11):795-803.

[003] Atiquzzaman M. (1999). Coarse-to-fine search technique to detect circles in images, International Journal of Advanced Manufacture Technologies 15(2): 96-102.

[004] Chan T. F. and Vese L. A. (2001). Active contours without edges, IEEE Transactions on Image Processing 10(2): 266-277. | Zbl 1039.68779

[005] Duda R. O. and Hart P. E. (1972). Use of the Hough transform to detect lines and curves in pictures, Communications of the ACM 15(1): 11-15. | Zbl 1296.94027

[006] Elder J. H. and Zucker S. W. (1996). Computing contour closure, Proceedings of the 4-th European Conference on Computer Vision- Volume I, Cambridge, UK, 1, 399-412.

[007] Fitzgibbon A., Pilu M. and Fisher R. B. (1999). Direct least square fitting of ellipses, IEEE Transactions on Pattern Analysis and Machine Inteligence 21(5): 477-480.

[008] Gerig G. and Klein F. (1986). Fast contour identification through efficient Hough transform and simplified interpretation strategy, Proceedings of the International Joint Conference on Pattern Recognition, Paris, France, pp. 498-500.

[009] Glab G., Florczak K., Jaronski J., and Licznerski T. (2001). Gynecological Cyto-diagnosis in Phase Contrast Microscopy, Blackhorse, Warsaw (in Polish).

[010] Guil N. and Zapata E. L. (1997). Low order circle and ellipse Hough transform, Journal of Pattern Recognition 30(10): 1729-1744.

[011] Hough P. V. C. (1962). Methods and means for recognizing complex patterns, U.S. Patent 3; 069; 654.

[012] Kavianpour A., Shoari S. and Bagherzadeh N. (1994). A new approach for circle detection on multiprocessors, Journal of Parallel and Distributed Computing 20(2): 256-260. | Zbl 0805.68136

[013] Kimme C., Ballard D. and Sklansky J. (1975). Finding circles by an array of accumulators, Communitations of the ACM 18(2): 120-122. | Zbl 0296.68099

[014] McLaughlin R. A. and Alder M. D. (1998). Technical report- The Hough transform versus the upwrite, IEEE Transactions on Pattern Analysis and Machine Intelligence 20(4): 396-400.

[015] Minor L. G. and Sklansky J. (1981). Detection and segmentation of blobs in infrared images, IEEE Transactions on Systems, Man, and Cybernetics 11(3): 194-201.

[016] Peura M. and Iivarinen J. (1997). Efficiency of simple shape descriptors, Aspects of Visual Form, Proceedings of the 3rd International Workshop on Visual Forum, Capri, Italy, pp. 443-451.

[017] Ray N., Acton S. T. and Ley K. F. (2002). Tracking leukocytes in vivo with shape and size constrained active contours, IEEE Transactions on Medical Imaging 21(10): 1222-1235.

[018] Rosin P. (1996). Assessing error of fit functions for ellipses, Graphical Models and Image Processing 58(5): 494-502.

[019] Rosin P. (2000). Measuring shape: Ellipticity, rectangularity, and triangularity, Proceedings of the 15-th International Conference on Pattern Recognition, Barcelona, Spain, pp. 1952-1955.

[020] Ross K. F. A. (1967). Phase Contrast and Interference Microscopy for Cell Biologists, Edward Arnold Publishers, London.

[021] Shashua A. and Ullman S. (1991). Grouping contours by iterated pairing network, Neural Info 3: 335-341.

[022] Smereka M. (2003). Nuclei recognition in phase contrast microscopy images, Proceedings of the 3-rd International Conference on Computer Recognition Systems KOSYR, Mitków, Poland, pp. 35-40.

[023] World Health Organization. (1988). Cytological Screening in the Control of Cervical Cancer: Technical Guidelines, World Health Organization, Geneva.

[024] Zhu Q., Payne M. and Riordan V. (1996). Edge linking by a directional potential functions, Image and Vision Computing 14(1): 59-70.