Some properties of the spectral radius of a set of matrices
Czornik, Adam ; Jurgas, Piotr
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006), p. 183-188 / Harvested from The Polish Digital Mathematics Library

In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices, whereas in the existing results it is expressed by eigenvalues.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:207783
@article{bwmeta1.element.bwnjournal-article-amcv16i2p183bwm,
     author = {Czornik, Adam and Jurgas, Piotr},
     title = {Some properties of the spectral radius of a set of matrices},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {16},
     year = {2006},
     pages = {183-188},
     zbl = {1113.15009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv16i2p183bwm}
}
Czornik, Adam; Jurgas, Piotr. Some properties of the spectral radius of a set of matrices. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) pp. 183-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv16i2p183bwm/

[000] Berger M.A. and Yang Wang (1992): Bounded semigroups ofmatrices. - Lin. Alg. Appl., Vol. 166, No. 1, pp. 21-27. | Zbl 0818.15006

[001] Czornik A. (2005): On the generalized spectral subradius. - Lin. Alg. Appl., Vol. 407, No. 1, pp. 242-248. | Zbl 1080.15008

[002] Daubechies I. and Lagarias J.C. (1992a): Two-scale difference equation II. Infinite matrix products, local regularity bounds and fractals. - SIAM J. Math. Anal., Vol. 23, No. 4, pp. 1031-1079. | Zbl 0788.42013

[003] Daubechies I. and Lagarias J.C (1992b): Sets of matrices all infinite products of which converge. - Linear Alg. Appl., No. 161,pp. 227-263. | Zbl 0746.15015

[004] Elsner L. (1995): The generalized spectral radius theorem: Ananalytic-geometric proof. - Lin. Alg. Appl., Vol. 220, No. 1, pp. 151-159. | Zbl 0828.15006

[005] Gol'dsheid I.Ya. and Margulis G.A. (1989): Lyapunov indices of aproduct of random matrices. - Russian Math. Surveys, Vol. 44,No. 1, pp. 11-71.

[006] Golub G.H. and Loan C.F.V. (1996): Matrix Computations. - 3rd Ed. Baltimore, Johns Hopkins University Press. | Zbl 0865.65009

[007] Gripenberg G. (1996): Computing the joint spectral radius. - Lin. Alg. Appl., Vol. 234, No. 1, pp. 43-60. | Zbl 0863.65017

[008] Guglielmi N. and Zennaro M. (2001): On the asymptotic properties of a family of matrices. - Lin. Alg. Appl., Vol. 322,No. 1-3, pp. 169-192. | Zbl 0971.15016

[009] Gurvits L. (1995): Stability of discrete linear inclusion. - Lin. Alg. Appl., Vol. 231, No. 1, pp. 47-85. | Zbl 0845.68067

[010] Horn R.A. and Johnson C.R. (1985): Matrix Analysis. - Cambridge, MA: Cambridge Univ. Press. | Zbl 0576.15001

[011] Jia R.Q. (1995): Subdivision schemes in L_p spaces. - Adv. Comput. Math., Vol. 3, No. 1, pp.309-341. | Zbl 0833.65148

[012] Michelli C.A. and Prautzsch H. (1989): Uniform refinement of curves. - Lin. Alg. Appl., Vol. 114 and 115, No. 1, pp. 841-870. | Zbl 0668.65011

[013] Rota G.C. and Strang G. (1960): A note on the joint spectral radius. - Inag. Math. Vol. 22,No. 1, pp. 379-381. | Zbl 0095.09701

[014] Shih M.H. (1999): Simultaneous Schur stability. - Lin. Alg. Appl., Vol. 287, No. 1-3, pp. 323-336. | Zbl 0948.15016