Finite horizon nonlinear predictive control by the Taylor approximation application to robot tracking trajectory
Hedjar, Ramdane ; Toumi, Redouane ; Boucher, Patrick ; Dumur, Didier
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005), p. 527-540 / Harvested from The Polish Digital Mathematics Library

In industrial control systems, practical interest is driven by the fact that today's processes need to be operated under tighter performance specifications. Often these demands can only be met when process nonlinearities are explicitly considered in the controller. Nonlinear predictive control, the extension of well-established linear predictive control to nonlinear systems, appears to be a well-suited approach for this kind of problems. In this paper, an optimal nonlinear predictive control structure, which provides asymptotic tracking of smooth reference trajectories, is presented. The controller is based on a finite-horizon continuous time minimization of nonlinear predicted tracking errors. A key feature of the control law is that its implementation does not need to perform on-line optimization, and asymptotic tracking of smooth reference signal is guaranteed. An integral action is used to increase the robustness of the closed-loop system with respect to uncertainties and parameters variations. The proposed control scheme is first applied to planning motions problem of a mobile robot and, afterwards, to the trajectory tracking problem of a rigid link manipulator. Simulation results are performed to validate the tracking performance of the proposed controller.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:207764
@article{bwmeta1.element.bwnjournal-article-amcv15i4p527bwm,
     author = {Hedjar, Ramdane and Toumi, Redouane and Boucher, Patrick and Dumur, Didier},
     title = {Finite horizon nonlinear predictive control by the Taylor approximation application to robot tracking trajectory},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {15},
     year = {2005},
     pages = {527-540},
     zbl = {1105.93031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i4p527bwm}
}
Hedjar, Ramdane; Toumi, Redouane; Boucher, Patrick; Dumur, Didier. Finite horizon nonlinear predictive control by the Taylor approximation application to robot tracking trajectory. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 527-540. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i4p527bwm/

[000] Boucher P. and Dumur D. (1996): La commande predictive. - Paris: Technip. | Zbl 0889.93002

[001] Canudas De Wit C. and Fixot N. (1992): Adaptive control of robot manipulators via velocity estimated feedback.- IEEE Trans. Automat. Contr., Vol. 37, No. 8, pp. 1234-1237. | Zbl 0777.93057

[002] Chen W.H., Balance D.J. and Gawthrop P.J. (2003): Optimal control of nonlinear systems: A predictive control approach. - Automatica, Vol. 39, No. 4, pp. 633-641. | Zbl 1017.93044

[003] Chun Y.S. and Stepanenko Y. (1996): On the robust control of robot manipulators including actuator dynamics. - J. Robot. Sys., Vol. 13, No. 1, pp. 1-10. | Zbl 0884.70037

[004] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987a): Generalized predictive control, Part I: The basic algorithm. - Automatica, Vol. 23, No. 2, pp. 137-148. | Zbl 0621.93032

[005] Clarke D.W, Mohtadi C. and Tuffs P.S. (1987b): Generalized predictive control, Part II. Extension and interpretations. - Automatica, Vol. 23, No. 2, pp. 149-160. | Zbl 0621.93033

[006] Demircioglu H. and Gawthrop P.J. (1991): Continuous-time generalized predictive control (GPC). - Automatica, Vol. 27, No. 1, pp. 55-74. | Zbl 0733.93040

[007] Gauthier J.P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems: Application to bioreactor. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. | Zbl 0775.93020

[008] Henson M.A. and Seborg D.E. (1997): Nonlinear Process Control. - Englewood Cliffs, NJ: Prentice Hall. | Zbl 0875.93345

[009] Henson M.A. (1998): Nonlinear model predictive control: Current status and future directions. - Comput. Chemi. Eng., Vol. 23, No. 2, pp. 187-202.

[010] Khalil H.K. (1992): Nonlinear Systems. - New York: Macmillan. | Zbl 0969.34001

[011] Kim M.S., Shin J.H., Hong S.G. and Lee J.J. (2003): Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modelling uncertainty and disturbances. - Mechatron. J., Vol. 13, No. 5, pp. 507-519.

[012] Lee K.W. and Khalil H.K. (1997): Adaptive output feedback control of robot manipulators using high gain observer. - Int. J. Contr., Vol. 67, No. 6, pp. 869-886. | Zbl 0881.93049

[013] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: stability and optimality. - Automatica, Vol. 36, No. 6, pp. 789-814. | Zbl 0949.93003

[014] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623-1633. | Zbl 0790.93038

[015] Morari M., Lee J.H. (1999): Model predictive control: past, present and future. - Comput. Chem. Eng., Vol. 23, No. 4-5, pp. 667-682.

[016] Ping L. (1995): Optimal predictive control of continuous nonlinear systems. - Int. J. Contr., Vol. 62, No. 2, pp. 633-649. | Zbl 0830.93028

[017] Singh S.N., Steinberg M. and DiGirolamo R.D. (1995): Nonlinear predictive control of feedback linearizable systems and flight control system design. - J. Guid. Contr. Dynam., Vol. 18, No. 5, pp. 1023-1028. | Zbl 0850.93624

[018] Souroukh M. and Kravaris C. (1996): A continuous-time formulation of nonlinear model predictive control. - Int. J. Contr., Vol. 63, No. 1, pp. 121-146. | Zbl 0849.93026

[019] Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. - New York: Wiley.

[020] Spong M.W. (1992): Robust control of robot manipulators. - IEEE Trans. Automat. Contr., Vol. 37, No. 11, pp. 1782-1786. | Zbl 0778.93082