Molecular modelling of stresses and deformations in nanostructured materials
Szefer, Gwidon
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004), p. 541-548 / Harvested from The Polish Digital Mathematics Library

A molecular dynamics approach to the deformation and stress analysis in structured materials is presented. A new deformation measure for a lumped mass system of points is proposed. In full consistency with the continuum mechanical description, three kinds of stress tensors for the discrete system of atoms are defined. A computer simulation for a set of 10^5 atoms forming a sheet undergoing tension (Case 1) and contraction (Case 2) is given. Characteristic microstress distributions evoked by a crack propagation illustrate the mechanical problem considered.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:207718
@article{bwmeta1.element.bwnjournal-article-amcv14i4p541bwm,
     author = {Szefer, Gwidon},
     title = {Molecular modelling of stresses and deformations in nanostructured materials},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {14},
     year = {2004},
     pages = {541-548},
     zbl = {1137.74427},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p541bwm}
}
Szefer, Gwidon. Molecular modelling of stresses and deformations in nanostructured materials. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 541-548. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p541bwm/

[000] Andersen H. (1980): Molecular dynamics simulation at constant pressureandor temperature. - J. Chem. Phys., Vol. 72, No. 4, pp. 2384-2390

[001] Cleland A. (2003): Foudations of Nanomechanics. - Berlin: Springer.

[002] Egami T. and Srolovitz D. (1982): Local structural fluctuations in amorphous and liquid metals: A simple theory of the glass transition. - J. Phys. F: Metal Phys., Vol. 12, pp. 2141-2163.

[003] Heermann D. (1997): Foundations of Computer Simulations in Physics. -Warsaw: WNT (in Polish). | Zbl 24.0080.05

[004] Nalva H.S. (Ed.) (2000): Handbook of Nanostructured Materials and Nanotechnology, Vols. 1-5. - Academic Press.

[005] Ortiz M. and Phillips R. (1999): Nanomechanics of defects in solids.- Adv. Appl. Mech., Vol. 36, pp. 1-79.

[006] Parrinello M. and Rahman A. (1980): Crystal structure and pair potentials: A molecular dynamics study. - Phys. Rev. Letters, Vol. 45, No. 14, p. 1196.

[007] Ray J. (1983): Molecular dynamics equations of motion for system varying in shape and size. - J. Chem. Phys., Vol. 79, No. 10.

[008] Ribarsky M. and Landman U. (1988): Dynamical simulation of stress, strain and finite deformations. - Phys. Rev. B, Vol. 38, No. 14, pp. 9522-95370.

[009] Singer I. and Pollock H. (Eds). (1992): Fundamentals of Friction. - Dordrecht: Kluwer.

[010] Sunyk R. and Steinmann P. (2001): Mixed continuum-atomistic analysis of single crystals, In: Zur Beschreibung komplexen Materialverhaltens: Beiträge zur Festschrift anläßlich des 50. Geburtstag von Herrn Prof. Dr.-Ing. W. Ehlers (S. Diebels, Ed.).— Stuttgart: Univ. Stuttgart.

[011] Szefer G. (2000): Foundations of nanomechanics of materials.- Proc. 19-th Symp. Exp. Mech. Solids, Jachranka, Poland, (in Polish).

[012] Szefer G. (2003): Molecular stress analysis in nanostructural materials. - Proc. Conf. Computer Meth. Mech., Gliwice, Poland, (in Polish).