Beta fuzzy logic systems approximation properties in the mimo case
Alimi, Adel ; Hassine, Radhia ; Selmi, Mohamed
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003), p. 225-238 / Harvested from The Polish Digital Mathematics Library

Many researches have been interested in the approximation properties of Fuzzy Logic Systems (FLS), which, like neural networks, can be seen as approximation schemes. Almost all of them tackled the Mamdani fuzzy model, which was shown to have many interesting approximation features. However, only in few cases the Sugeno fuzzy model was considered. In this paper, we are interested in the zero-order Multi-Input-Multi-Output (MIMO) Sugeno fuzzy model with Beta membership functions. This leads to Beta Fuzzy Logic Systems (BFLS). We show that BFLSs are universal approximators. We also prove that they possess the best approximation property and the interpolation characteristic.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:207639
@article{bwmeta1.element.bwnjournal-article-amcv13i2p225bwm,
     author = {Alimi, Adel and Hassine, Radhia and Selmi, Mohamed},
     title = {Beta fuzzy logic systems approximation properties in the mimo case},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {13},
     year = {2003},
     pages = {225-238},
     zbl = {1060.93062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv13i2p225bwm}
}
Alimi, Adel; Hassine, Radhia; Selmi, Mohamed. Beta fuzzy logic systems approximation properties in the mimo case. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) pp. 225-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv13i2p225bwm/

[000] Alimi A.M. (2002): Evolutionary computation for the recognition of on-line cursive handwriting. — IETE J. Research, Special Issue on “Evolutionary Computation in Engineering Sciences” (S.K. Pal et al., Eds.), in press.

[001] Alimi M.A. (2000): The Beta system: Toward a change in our use of neuro-fuzzy systems. —Int. J. Manag., pp. 15–19.

[002] Alimi A., Hassine R. and Selmi M. (2000): Beta fuzzy logic systems: Approximation properties in the SISO case.—Int. J. Appl. Math. Comput. Sci., Vol. 10, No. 4, pp. 857–875. | Zbl 0969.93021

[003] Alimi M.A. (1998a): Segmentation of on-line cursive handwriting based on genetic algorithms. — Proc. IEEE/IMACS Multiconf. Computational Engineering in Systems Applications, CESA’98, Hammamet, Tunisia, Vol. 4, pp. 435– 438.

[004] Alimi M.A. (1998b): What are the advantages of using the Beta neuro-fuzzy system? — Proc. IEEE/IMACS Multiconf. Computational Engineering in Systems Applications, CESA’98, Hammamet, Tunisia, Vol. 2, pp. 339–344.

[005] Alimi M.A. (1998c): Recognition of on-line handwritten characters with the Beta fuzzy neural network. — Proc. IEEE/IMACS Multiconf. Computational Engineering in Systems Applications, CESA’98, Hammamet, Tunisia, Vol. 2, pp. 335–338.

[006] Alimi M.A. (1997a): The recognition of arabic handwritten characters with the Beta neuro-fuzzy network. — Proc. 17éme Journées Tunisiennes d’Électrotechnique et d’Automatique, JTEA’97, Nabeul, Tunisia, Vol. 1, pp. 349–356.

[007] Alimi M.A. (1997b): The Beta fuzzy system: Approximation of standard membership ffunctions. — Proc. 17éme Journées Tunisiennes d’Électrotechnique et d’Automatique, JTEA’97, Nabeul, Tunisia, Vol. 1, pp. 108–112.

[008] Alimi M.A. (1997c): An evolutionary neuro-fuzzy approach to recognize on-line arabic handwriting. — Proc. Int. Conf. Document Analysis and Recognition, ICDAR’97, Ulm, Germany, pp. 382–386.

[009] Alimi M.A. (1997d): A neuro-fuzzy approach to recognize arabic hand written characters. — Proc. Int. Conf. Neural Networks, ICNN’97, Houston, TX, USA, pp. 1397–1400.

[010] Alimi M.A. (1997e): Beta fuzzy basis functions for the design of universal robust neuro-fuzzy controllers. — Proc. Séminaire sur la Commande Robuste & Ses Applications, SCRA’97, Nabeul, Tunisia, pp. C1–C5.

[011] Bouchon-Meunier B. (1995): La logique floue et ses applications. —Paris: Addison-Wesley.

[012] Castro J.L. and Delgado M. (1996): Fuzzy systems with defuzzification are universal approximators.—IEEE Trans. Syst. Man Cybern., Vol. 26, pp. 149–152.

[013] Dickerson J.A. and Kosko B. (1996): Fuzzy function approximation with ellipsoidal rules. — IEEE Trans. Sys. Man Cybern., Vol. 26, pp. 542–560.

[014] Girosi F. and Poggio T. (1990): Networks and best approximation property.— Biol. Cybern., Vol. 63, pp. 169–176 | Zbl 0714.94029

[015] Glorennee P.-Y. (1996): Quelques aspects analytiques des systèmes d’inférence floue.—RAIRO – APII – JESA, Vol. 30, Nos. 2–3, pp. 231–254.

[016] Gorrini V., Salome T. and Bersini H. (1995): Self-structering fuzzy systems for function approximation. — Proc. IEEE Int. Conf. Fuzzy Syst., Yokohama, Japan, pp. 919–926.

[017] Hartani R., Nguyen T.H. and Bouchon-Meunier B.(1996): Sur l’approximation universelle des systèmes flous. — RAIRO – APII – JESA, Vol. 30, No. 5, pp. 645–663.

[018] Hassine R., Alimi M.A. and Selmi M. (2000): What about the best approximation property of Beta fuzzy logic systems? In: New Frontiers in Computational Intelligence and Its Applications (M. Mohammadian, Ed.). — Amsterdam: IOS Press, The Netherlands, pp. 62–67.

[019] Jang J.-S-R. (1993): ANFIS: Adaptive network based fuzzy inference systems. — IEEE Trans. Syst. Man Cybern., Vol. 23, No. 3, pp. 665–685.

[020] Jang J.-S-R. and Sun C.-T. (1995): Neuro-fuzzy modeling and control.— Proc. IEEE, Vol. 83, No. 3, pp. 378–406.

[021] Johnson N.I. (1970): Continuous Univariate Distributions. — Boston: Houghton Mifflin Co.

[022] Kosko B. (1993): Fuzzy Thinking: The New Science of Fuzzy Logic. —New York: Hyperion. | Zbl 0782.94005

[023] Kosko B. (1992): Fuzzy systems as universal approximators. — Proc. IEEE Int. Conf. Fuzzy Syst., San Diego, CA, pp. 1153–1162.

[024] Laukonen E.G. and Passino K.M. (1994): Fuzzy systems for function approximation with applications to failure estimation. — Proc. IEEE Int. Symp. Intell. Contr., Columbus, OH, pp. 184–189.

[025] Lee C.C. (1990): Fuzzy logic in control systems: Fuzzy logic control – Part I. — IEEE Trans. Syst. Man Cybern., Vol. 20, No. 2, pp. 404–418. | Zbl 0707.93036

[026] Lewis F.L., Zhu S.-Q. and Liu K. (1995): Function approximation by fuzzy systems.—Proc. Amer. Contr. Conf., Seattle, WA, pp. 3760–3764.

[027] Mamdani E.H. and Assilian S. (1975): An experiment in linguistic synthesis with a fuzzy logic controller. — Int. J. Man- Mach. Stud., Vol. 7, No. 1, pp. 1–13. | Zbl 0301.68076

[028] Mao Z.H., Li Y.D. and Zhang X.F. (1997): Approximation capability of fuzzy systems using translations and dilations of one fixed function as membership functions. — IEEE Trans. Fuzzy Syst., Vol. 5, No. 3. pp. 468–473.

[029] Masmoudi M., Samet M., and Alimi M.A. (2000): A bipolar implementation of the Beta neuron. — Int. J. Electron., Vol. 87, No. 6, pp. 675–682.

[030] Mendel J.M. (1995): Fuzzy logic systems for engineering: A tutorial. —Proc. IEEE, Vol. 83, No. 3, pp. 345–377.

[031] Nguyen H.T., Kreinovich V. and Sirisaengtaksin O. (1996): Fuzzy control as a universal control tool. — Fuzzy Sets Syst., Vol. 80, No. 1, pp. 71–86. | Zbl 0881.93040

[032] Nguyen H.T. and Kreinovich V. (1992): On approximations of controls by fuzzy systems. — Tech. Rep., No. TR 92- 93/302, LIFE Chair of Fuzzy Theory, Tokyo Institute of Technology.

[033] Pedrycz W. (1994): Why triangular membership functions? — Fuzzy Sets Syst., Vol. 64, No. 1, pp. 21–30.

[034] Rudin W. (1974): Real and Complex Analysis. — New York: McGraw-Hill. | Zbl 0278.26001

[035] Stone M.H. (1937): Applications of the theory of Boolean rings to general topology.—AMS Trans., Vol. 41, pp. 375–481. | Zbl 0017.13502

[036] Stone M.H. (1948): The generalized weierstrass approximation theorem. —Math. Mag., Vol. 21, pp. 167–183, 237–254.

[037] Sugeno M. and Kang G.T. (1988): Structure identification of fuzzy models. — Fuzzy Sets Syst., Vol. 28, No. 1, pp. 15– 33. | Zbl 0652.93010

[038] Takagi T. and Sugeno M.(1985): Fuzzy identification of systems and its applications to modeling and control.—IEEE Trans. Syst. Man Cybern., Vol. 15, pp. 116–132. | Zbl 0576.93021

[039] Terano T., Asai K. and Sugeno M. (1992): Fuzzy Systems Theory and its Applications. —New York: Academic Press. | Zbl 0747.93050

[040] Yen J., Langari R. and Zadeh L. (1995): Industrial Applications of Fuzzy Logic and Intelligent Systems.—New York: IEEE Press. | Zbl 0864.00015

[041] Yosida K. (1974): Functional Analysis. — Berlin: Springer.

[042] Wang L.-X. (1992): Fuzzy systems are universal approximators. — Proc. IEEE Int. Conf. Fuzzy Systems, San Diego, CA. pp. 1163–1170.

[043] Wang L.-X. and Mendel J.M. (1992): Fuzzy basis functions, universal approximations, and orthogonal least-squares learning. — IEEE Trans. Neural Netw., Vol. 3, No. 5, pp. 807–814.

[044] Wang P.-Z., Tan S., Song F. and Liang P. (1997): Constructive theory for fuzzy systems. — Fuzzy Sets Syst., Vol. 88, No. 2, pp. 195–203. | Zbl 0936.26014

[045] Ying H. (1998): General SISO Takagi–Sugeno fuzzy systems with linear rule consequent are universal approximators. —IEEE Trans. Fuzzy Syst., Vol. 6, No. 4. pp. 582–587.

[046] Zadeh L.A. (1965): Fuzzy sets. — Inf. Contr., Vol. 8, pp. 338– 353. | Zbl 0139.24606

[047] Zeng X.-J. and Singh M.G.(1994): Approximation theory of fuzzy systems—SISO Case. — IEEE Trans. Fuzzy Syst., Vol. 2, No. 2, pp. 162–176.

[048] Zeng X.-J. and Singh M.G.(1995): Approximation theory of fuzzy systems—MIMO Case.—IEEE Trans. Fuzzy Syst., Vol. 3, No. 2, pp. 219–235.