The Lucas congruence for Stirling numbers of the second kind
Sánchez-Peregrino, Roberto
Acta Arithmetica, Tome 92 (2000), p. 41-52 / Harvested from The Polish Digital Mathematics Library

0. Introduction. The numbers introduced by Stirling in 1730 in his Methodus differentialis [11], subsequently called “Stirling numbers” of the first and second kind, are of the greatest utility in the calculus of finite differences, in number theory, in the summation of series, in the theory of algorithms, in the calculation of the Bernstein polynomials [9]. In this study, we demonstrate some properties of Stirling numbers of the second kind similar to those satisfied by binomial coefficients; in particular we show that they satisfy a congruence analogous to that of Lucas, that is to: (ab)i=0n(aibi)modp with a=i=0naipi, b=i=0nbipi; 0aip-1, 0bip-1. Using Proposition 4.1 we give another proof for Kaneko’s recurrence formula for poly-Bernoulli numbers [10]. Some of the results are similar to those of Howard [5]. In conclusion, I wish to give my best thanks to the Geometry Group of the Dipartimento di Matematica Pura ed Applicata and Dipartimento di Metodi Matematici per le Scienze Applicate of the University of Padova, for support and help given during the preparation of this work. In particular, I wish to thank Frank Sullivan for his precious advice and suggestions.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207424
@article{bwmeta1.element.bwnjournal-article-aav94i1p41bwm,
     author = {S\'anchez-Peregrino, Roberto},
     title = {The Lucas congruence for Stirling numbers of the second kind},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {41-52},
     zbl = {0947.11012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i1p41bwm}
}
Sánchez-Peregrino, Roberto. The Lucas congruence for Stirling numbers of the second kind. Acta Arithmetica, Tome 92 (2000) pp. 41-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i1p41bwm/

[00000] [1] H. W. Becker and J. Riordan, The arithmetic of Bell and Stirling numbers, Amer. J. Math. 70 (1948), 385-394. | Zbl 0036.02302

[00001] [2] L. Carlitz, Weighted Stirling numbers of the first and second kind, I, Fibonacci Quart. 18 (1970), 147-162. | Zbl 0428.05003

[00002] [3] L. Comtet, Analyse Combinatoire, Tomes i, ii, Presses Univ. de France, Paris, 1970.

[00003] [4] A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly 99 (1992), 403-422.

[00004] [5] F. T. Howard, Congruences for the Stirling numbers and associated Stirling numbers, Acta Arith. 55 (1990), 29-41. | Zbl 0648.10008

[00005] [6] C. Jordan, Calculus of Finite Differences, Chelsea, New York, 1960.

[00006] [7] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 221-228.

[00007] [8] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Grad. Texts in Math. 58, Springer, Berlin, 1977.

[00008] [9] R. Sánchez-Peregrino, Identité de Bernstein pour une fonction homogène à singularité isolée, Rend. Sem. Mat. Univ. Padova 81 (1989), 221-227. | Zbl 0684.32007

[00009] [10] R. Sánchez-Peregrino, Another proof of Kaneko's recurrence formula for the Bernoulli numbers, pre- print.

[00010] [11] J. Stirling, Methodus differentialis, sive tractatus de summatione et interpolazione serierum infinitarum, Londini, 1730.