Index form equations in quintic fields
István Gaál ; Kálmán Győry
Acta Arithmetica, Tome 89 (1999), p. 379-396 / Harvested from The Polish Digital Mathematics Library

The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit equations in which the unknown units are elements of unit groups generated by much fewer generators. On the other hand, Wildanger [32] worked out an efficient enumeration algorithm that makes it feasible to solve unit equations even if the rank of the unit group is ten. Combining these developments we describe an algorithm to solve completely index form equations in quintic fields. The method is illustrated by numerical examples: we computed all power integral bases in totally real quintic fields with Galois group S₅.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:207277
@article{bwmeta1.element.bwnjournal-article-aav89i4p379bwm,
     author = {Istv\'an Ga\'al and K\'alm\'an Gy\H ory},
     title = {Index form equations in quintic fields},
     journal = {Acta Arithmetica},
     volume = {89},
     year = {1999},
     pages = {379-396},
     zbl = {0930.11091},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p379bwm}
}
István Gaál; Kálmán Győry. Index form equations in quintic fields. Acta Arithmetica, Tome 89 (1999) pp. 379-396. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav89i4p379bwm/

[000] [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. | Zbl 0788.11026

[001] [2] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993. | Zbl 0786.11071

[002] [3] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283.

[003] [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 175-202.

[004] [5] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), 463-471. | Zbl 0556.10022

[005] [6] I. Gaál, Inhomogeneous discriminant form equations and integral elements with given discriminant over finitely generated integral domains, Publ. Math. Debrecen 34 (1987), 109-122. | Zbl 0626.10015

[006] [7] I. Gaál, Power integral bases in orders of families of quartic fields, ibid. 42 (1993), 253-263. | Zbl 0814.11051

[007] [8] I. Gaál, Computing all power integral bases in orders of totally real cyclic sextic number fields, Math. Comp. 65 (1996), 801-822. | Zbl 0857.11069

[008] [9] I. Gaál, Computing elements of given index in totally complex cyclic sextic fields, J. Symbolic Comput. 20 (1995), 61-69. | Zbl 0857.11068

[009] [10] I. Gaál, Power integral bases in algebraic number fields, Proc. Conf. Mátraháza, 1995, Ann. Univ. Sci. Budapest Eötvös Sect. Comp., to appear. | Zbl 1011.11068

[010] [11] I. Gaál, Application of Thue equations to computing power integral bases in algebraic number fields, in: Algorithmic Number Theory (Talence, 1996), H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 151-155. | Zbl 0891.11062

[011] [12] I. Gaál, Power integral bases in composits of number fields, Canad. Math. Bull. 41 (1998), 158-165. | Zbl 0951.11012

[012] [13] I. Gaál, Power integral bases in algebraic number fields, in: Number Theory, Walter de Gruyter, 1998, 243-254. | Zbl 1011.11067

[013] [14] I. Gaál, Solving index form equations in fields of degree nine with cubic subfields, to appear.

[014] [15] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, I, J. Number Theory 38 (1991), 18-34. | Zbl 0726.11022

[015] [16] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, II, ibid. 38 (1991), 35-51. | Zbl 0726.11023

[016] [17] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case, ibid. 53 (1995), 100-114. | Zbl 0853.11026

[017] [18] I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comput. 16 (1993), 563-584. | Zbl 0808.11023

[018] [19] I. Gaál, A. Pethő and M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms - with an application to index form equations in quartic number fields, J. Number Theory 57 (1996), 90-104. | Zbl 0853.11023

[019] [20] I. Gaál and M. Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield, J. Symbolic Comput. 22 (1996), 425-434. | Zbl 0873.11025

[020] [21] I. Gaál and M. Pohst, Power integral bases in a parametric family of totally real quintics, Math. Comp. 66 (1997), 1689-1696. | Zbl 0899.11064

[021] [22] I. Gaál and M. Pohst, On the resolution of relative Thue equations, to appear.

[022] [23] I. Gaál and N. Schulte, Computing all power integral bases of cubic number fields, Math. Comp. 53 (1989), 689-696. | Zbl 0677.10013

[023] [24] M. N. Gras, Non monogénéité de l'anneau des entiers des extensions cycliques de ℚ de degré premier l ≥ 5, J. Number Theory 23 (1986), 347-353.

[024] [25] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, III, Publ. Math. Debrecen 23 (1976), 141-165. | Zbl 0354.10041

[025] [26] K. Győry, On norm form, discriminant form and index form equations, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 617-676.

[026] [27] K. Győry, Bounds for the solutions of decomposable form equations, Publ. Math. Debrecen 52 (1998), 1-31. | Zbl 0902.11015

[027] [28] K. Győry, Recent bounds for the solutions of decomposable form equations, in: Number Theory, Walter de Gruyter, 1998, 255-270. | Zbl 0973.11042

[028] [29] M. Klebel, Zur Theorie der Potenzganzheitsbases bei relativ galoisschen Zahlkörpern, Dissertation, Univ. Augsburg, 1995.

[029] [30] D. Koppenhöfer, Über projektive Darstellungen von Algebren kleinen Ranges, Dissertation, Univ. Tübingen, 1994.

[030] [31] N. P. Smart, Solving discriminant form equations via unit equations, J. Symbolic Comput. 21 (1996), 367-374. | Zbl 0867.11016

[031] [32] K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern mit einer Anwendung auf die Bestimmung aller ganzen Punkte einer Mordellschen Kurve, Dissertation, Technical University, Berlin, 1997.