On the converse of Wolstenholme's Theorem
Richard J. McIntosh
Acta Arithmetica, Tome 69 (1995), p. 381-389 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206780
@article{bwmeta1.element.bwnjournal-article-aav71i4p381bwm,
     author = {Richard J. McIntosh},
     title = {On the converse of Wolstenholme's Theorem},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {381-389},
     zbl = {0829.11003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav71i4p381bwm}
}
Richard J. McIntosh. On the converse of Wolstenholme's Theorem. Acta Arithmetica, Tome 69 (1995) pp. 381-389. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav71i4p381bwm/

[000] [1] H. W. Brinkmann, Problem E.435, Amer. Math. Monthly 48 (1941), 269-271.

[001] [2] V. Brun, J. Stubban, J. Fjeldstad, R. Lyche, K. Aubert, W. Ljunggren and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients, in: Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, 42-54. | Zbl 0048.27204

[002] [3] J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), 151-153. | Zbl 0789.11020

[003] [4] M. D. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269. | Zbl 0277.02008

[004] [5] L. E. Dickson, The History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966. | Zbl 0139.26603

[005] [6] H. M. Edwards, Fermat's Last Theorem, Springer, New York, 1977.

[006] [7] J. W. L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 1-35. | Zbl 30.0180.01

[007] [8] J. W. L. Glaisher, On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p² or p³, Quart. J. Math., 321-353. | Zbl 31.0185.01

[008] [9] R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.

[009] [10] W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120. | Zbl 0302.10020

[010] [11] W. Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265. | Zbl 0308.10006

[011] [12] J. P. Jones, Private correspondence, January 1994.

[012] [13] J. P. Jones and Yu. V. Matijasevič, Proof of recursive unsolvability of Hilbert's tenth problem, Amer. Math. Monthly 98 (1991), 689-709. | Zbl 0746.03006

[013] [14] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.

[014] [15] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360. | Zbl 0019.00505

[015] [16] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.

[016] [17] Yu. V. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (in Russian); English transl. with addendum: Soviet Math. Dokl. 11 (1970), 354-357. MR 41, #3390.

[017] [18] Yu. V. Matijasevič, Primes are non-negative values of a polynomial in 10 variables, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR 68 (1977), 62-82 (in Russian); English transl.: J. Soviet Math. 15 (1981), 33-44.

[018] [19] Yu. V. Matijasevič and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-553. | Zbl 0279.10019

[019] [20] R. J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99 (1992), 231-238. | Zbl 0755.11001

[020] [21] R. J. McIntosh, Congruences identifying the primes, Crux Mathematicorum 20 (1994), 33-35.

[021] [22] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979.

[022] [23] P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, New York, 1989. | Zbl 0642.10001

[023] [24] E. T. Stafford and H. S. Vandiver, Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. U.S.A. 16 (1930), 139-150. | Zbl 56.0887.04

[024] [25] J. W. Tanner and S. S. Wagstaff, Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), 341-350. | Zbl 0613.10012