On arithmetic progressions having only few different prime factors in comparison with their length
Pieter Moree
Acta Arithmetica, Tome 69 (1995), p. 295-312 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:206753
@article{bwmeta1.element.bwnjournal-article-aav70i4p295bwm,
     author = {Pieter Moree},
     title = {On arithmetic progressions having only few different prime factors in comparison with their length},
     journal = {Acta Arithmetica},
     volume = {69},
     year = {1995},
     pages = {295-312},
     zbl = {0821.11044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav70i4p295bwm}
}
Pieter Moree. On arithmetic progressions having only few different prime factors in comparison with their length. Acta Arithmetica, Tome 69 (1995) pp. 295-312. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav70i4p295bwm/

[000] [E] P. Erdős, Über die Primzahlen gewisser arithmetischer Reihen, Math. Z. 39 (1934), 473-491. | Zbl 61.0135.03

[001] [G] A. Granville, Integers, without large prime factors, in arithmetic progressions, I, Acta Math. 170 (1993), 255-273. | Zbl 0784.11045

[002] [Mc1] K. S. McCurley, Explicit estimates for θ(x;3,1) and ψ(x;3,1), Math. Comp. 42 (1984), 287-296.

[003] [Mc2] K. S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp., 265-285. | Zbl 0535.10043

[004] [Mo1] P. Moree, Bertrand's Postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35-43. | Zbl 0789.11001

[005] [Mo2] P. Moree, Psixyology and diophantine equations, Ph.D. thesis, Leiden University, 1993. | Zbl 0784.11046

[006] [RRu] O. Ramaré and R. Rumely, Primes in arithmetic progressions, Math. Comp., to appear. | Zbl 0856.11042

[007] [Ri] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989 (2nd ed., 1990).

[008] [RS1] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | Zbl 0122.05001

[009] [RS2] J. B. Rosser and L. Schoenfeld, Sharper bounds for Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243-269. | Zbl 0295.10036

[010] [Ru] R. Rumely, Numerical computations concerning the ERH, Math. Comp. 62 (1993), 415-440. | Zbl 0792.11034

[011] [ST1] T. N. Shorey and R. Tijdeman, On the number of prime factors of an arithmetical progression, Sichuan Daxue Xuebao 26 (1989), 72-74. | Zbl 0705.11052

[012] [ST2] T. N. Shorey and R. Tijdeman, On the number of prime factors of a finite arithmetical progression, Acta Arith. 61 (1992), 375-390. | Zbl 0773.11011

[013] [ST3] T. N. Shorey and R. Tijdeman, On the product of terms of a finite arithmetic progression, in: Proc. Conf. Diophantine Approximations and Transcendence Theory, Y.-N. Nakai (ed.), RIMS Kokyuroku 708, Kyoto, 1990, 51-62.

[014] [ST4] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression III, in: Proc. Conf. Luminy Transcendence Theory, 1990, Ph. Philippon (ed.), de Gruyter, Berlin, 1992. | Zbl 0709.11004