On the number of solutions of the generalized Ramanujan-Nagell equation x²-D=2n+2
Maohua Le
Acta Arithmetica, Tome 58 (1991), p. 149-167 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:206430
@article{bwmeta1.element.bwnjournal-article-aav60i2p149bwm,
     author = {Maohua Le},
     title = {On the number of solutions of the generalized Ramanujan-Nagell equation $x$^2$-D = 2^{n+2}$
            },
     journal = {Acta Arithmetica},
     volume = {58},
     year = {1991},
     pages = {149-167},
     zbl = {0747.11016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav60i2p149bwm}
}
Maohua Le. On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
            . Acta Arithmetica, Tome 58 (1991) pp. 149-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav60i2p149bwm/

[000] [1] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410. | Zbl 0371.10014

[001] [2] P. G. L. Dirichlet, Sur une propriété des formes quadratiques à déterminant positif, J. Math. Pures Appl. (2) 1 (1856), 76-79.

[002] [3] L.-K. Hua, Introduction to Number Theory, Springer, Berlin 1982.

[003] [4] M.-H. Le, The diophantine equation x²=4qn+4qm+1, Proc. Amer. Math. Soc. 106 (1989), 599-604.

[004] [5] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.

[005] [6] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig 1929. | Zbl 55.0262.09

[006] [7] K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57- 66 (in Czech).

[007] [8] N. Tzanakisand J. Wolfskill, The diophantine equation x²=4qa/2+4q+1, with an application to coding theory, J. Number Theory 26 (1987), 96-116. | Zbl 0612.10013