Sistemi integrabili infinito dimensionali e loro perturbazioni
Bambusi, Dario ; Maspero, Alberto
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 2 (2017), p. 309-326 / Harvested from Biblioteca Digitale Italiana di Matematica

Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.

The last 50 years have seen enourmous advances in the comprehension of the qualitative behaviour of solutions of nonlinear partial differential equations. In particular the extension to this field of the methods of Hamiltonian mechanichs has been the key for the discovery of a full class of equations called ``integrable'', whose solutions always have a recurrent behaviour and has also allowed to shed some light on the solutions of perturbations of integrable equations, which can display both a recurrent and a turbulent behaviour. In this paper we will present some of the results of the theory from its beginning to our days and we will discuss some of the most important open problems.

Publié le : 2017-12-01
@article{RUMI_2017_1_2_3_309_0,
     author = {Dario Bambusi and Alberto Maspero},
     title = {Sistemi integrabili infinito dimensionali e loro perturbazioni},
     journal = {Matematica, Cultura e Societ\`a. Rivista dell'Unione Matematica Italiana},
     volume = {2},
     year = {2017},
     pages = {309-326},
     mrnumber = {3753847},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RUMI_2017_1_2_3_309_0}
}
Bambusi, Dario; Maspero, Alberto. Sistemi integrabili infinito dimensionali e loro perturbazioni. Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana, Tome 2 (2017) pp. 309-326. http://gdmltest.u-ga.fr/item/RUMI_2017_1_2_3_309_0/

[1] Arnold, V. I.. Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979.

[2] Arnold, V. I.. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. | MR 163025

[3] Arnold, V. I.. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. | MR 163026

[4] Baldi, P., Berti, M., and Montalto, R.. KAM for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. | MR 3201904 | Zbl 1350.37076

[5] Bambusi, D., Delort, J.-M., Grébert, B., and Szeftel, J.. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. | MR 2349351 | Zbl 1170.35481

[6] Bambusi, D. and Grébert, B.. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. | MR 2272975 | Zbl 1110.37057

[7] Bättig, D., Bloch, A. M., Guillot, J.-C., and Kappeler, T.. On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. | MR 1355177 | Zbl 0855.58035

[8] Bernard, P., Kaloshin, V., and Zhang, K.. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. | MR 3646879 | Zbl 1368.37068

[9] Berti, M., Corsi, L., and Procesi, M.. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. | MR 3312439 | Zbl 1312.35157

[10] Bourgain, J.. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. | MR 1345016 | Zbl 0834.35083

[11] Bourgain, J.. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. | MR 1668547 | Zbl 0928.35161

[12] Bourgain, J.. Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. | MR 2100420

[13] Boussinesq, J.. Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877.

[14] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., and Tao, T.. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. | MR 2651381 | Zbl 1197.35265

[15] Davis, P. J., Hersh, R., and Marchisotto, E. A.. The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. | MR 1347448 | Zbl 0837.00001

[16] Delort, J.-M.. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. | MR 3288855 | Zbl 1315.35003

[17] Dubrovin, B. A.. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. | MR 486780

[18] Dubrovin, B. A., Matveev, V. B., and Novikov, S. P.. Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. | MR 427869 | Zbl 0326.35011

[19] Dubrovin, B. A. and Novikov, S. P.. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. | MR 382877

[20] Eliasson, L. H. and Kuksin, S. B.. KAM for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. | MR 2680422 | Zbl 1201.35177

[21] Flaschka, H. and Mclaughlin, D. W.. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. | MR 403368 | Zbl 1109.35374

[22] Garnett, J. and Trubowitz, E.. Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. | MR 749109 | Zbl 0554.34013

[23] Gérard, P. and Grellier, S.. The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. | MR 2721876 | Zbl 1228.35225

[24] Giorgilli, A.. Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. | MR 2320481 | Zbl 1277.70015

[25] Giorgilli, A.. Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. | MR 2394380

[26] Guardia, M., Haus, E., and Procesi, M.. Growth of Sobolev norms for the analytic NLS on 𝕋2. Adv. Math., 301:615-692, 2016. | MR 3539385 | Zbl 1353.35260

[27] Hani, Z., Pausader, P., Tzvetkov, N. and Visciglia, N.. Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. | MR 3406826 | Zbl 1326.35348

[28] Hochstadt, H.. Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. | MR 156023 | Zbl 0122.09202

[29] Kappeler, T.. Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. | MR 1136595 | Zbl 0731.58033

[30] Kappeler, T. and Pöschel, J.. KAM & KdV. Springer, 2003. | MR 1997070

[31] Kappeler, T. and Topalov, P.. Global wellposedness of KdV in H-1(𝕋;). Duke Math. J., 135(2):327-360, 2006. | MR 2267286 | Zbl 1106.35081

[32] Kolmogorov, A. N.. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. | MR 68687 | Zbl 0056.31502

[33] Korteweg, D. D. J. and De Vries, D. G.. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. | MR 3363408 | Zbl 26.0881.02

[34] Kuksin, S. B.. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. | MR 911772 | Zbl 0631.34069

[35] Kuksin, S. B.. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. | MR 1290785 | Zbl 0784.58028

[36] Lax, P. D.. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. | MR 235310 | Zbl 0162.41103

[37] Marcenko, V. A. and Ostrovski, I. V.. A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. | MR 409965

[38] Marchenko, V. A.. Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. | MR 897106

[39] Mckean, H. P. and Trubowitz, E.. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. | MR 427731 | Zbl 0339.34024

[40] Moser, J.. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. | MR 147741 | Zbl 0107.29301

[41] Nekhoroshev, N. N.. Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. | MR 294813 | Zbl 0254.70015

[42] Poincaré, H.. Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. | MR 926906 | Zbl 24.1130.01

[43] Pöschel, J.. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. | MR 1401420

[44] Schneider, G. and Wayne, C. E.. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. | MR 1780702 | Zbl 1034.76011

[45] Scott Russell, J.. Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844.

[46] Trubowitz, E.. The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. | MR 430403 | Zbl 0403.34022

[47] Wayne, C. E.. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. | MR 1040892 | Zbl 0708.35087

[48] Zabusky, N. J. and Kruskal, M. D.. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. | Zbl 1201.35174