@article{RSMUP_1979__61__203_0, author = {Howard, F. T.}, title = {Bell polynomials and degenerate stirling numbers}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {61}, year = {1979}, pages = {203-219}, mrnumber = {569660}, zbl = {0425.10010}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1979__61__203_0} }
Howard, F. T. Bell polynomials and degenerate stirling numbers. Rendiconti del Seminario Matematico della Università di Padova, Tome 61 (1979) pp. 203-219. http://gdmltest.u-ga.fr/item/RSMUP_1979__61__203_0/
[1] Exponential polynomials, Ann. of Math., 35 (1934), pp. 258-277. | MR 1503161 | Zbl 0009.21202
,[2] A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), pp. 28-33. | MR 74436 | Zbl 0070.04003
,[3] Degenerate Stirling, Bernoulli and Eulerian numbers, to be published. | Zbl 0404.05004
,[4] Set partitions, Fibonacci Quart., 14 (1976), pp. 327-342. | MR 427087 | Zbl 0362.05024
,[5] Advanced Combinatories, Reidel, Dordrecht/Boston, 1974. | Zbl 0283.05001
,[6] J. C. AHUJA, Generalized Bell numbers, Fibonacci Quart., 14 (1976), pp. 67-73. | MR 414375 | Zbl 0353.10013
-[7] Associated Stirling numbers, Fibonacci Quart., to appear. | MR 600368 | Zbl 0443.10007
,[8] Numbers generated by the reciprocal of ex - x - 1, Math. Comp., 31 (1977), pp. 581-598. | MR 439741 | Zbl 0351.10010
,[9] An Introduction to Combinatorial Analysis, Wiley, New York, 1958. | MR 96594 | Zbl 0078.00805
,[10] Minimum variance unbiased estimation for the truncated Poisson distribution, Ann. of Math. Stat., 29 (1958), pp. 755-765. | MR 93849 | Zbl 0086.35404
- ,[11] Numeri di Stirling generalizzati, operatori differenziali e polinomi ipergeometrici, Commentat. Pontificia Ac. Sci., 3 (1939), pp. 721-757. | JFM 65.0296.03 | MR 3879
,[12] Some results for generalized Bernoulli, Euler and Stirling numbers, Fibonacci Quart., 16 (1978), pp. 103-112. | MR 485418 | Zbl 0377.10009
,[13] Numbers generated by the function egp (1 - ex), Fibonacci Quart., 7 (1969), pp. 437-447. | MR 258648 | Zbl 0191.32801
- ,