Existence and approximation results for gradient flows
Rossi, Riccarda ; Savaré, Giuseppe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004), p. 183-196 / Harvested from Biblioteca Digitale Italiana di Matematica

This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$ $$ \begin{cases} u^{\prime}(t) + \partial \phi(u(t)) \ni 0 \quad \text{a.e. in} \, (0,T),\\ u(0) = u_{0}, \end{cases} $$ where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi$ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a \textit{common gradient flow structure}. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational \textit{approximation} technique, featuring some ideas from the theory of \textit{Minimizing Movements}.

Publié le : 2004-12-01
@article{RLIN_2004_9_15_3-4_183_0,
     author = {Riccarda Rossi and Giuseppe Savar\'e},
     title = {Existence and approximation results for gradient flows},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {15},
     year = {2004},
     pages = {183-196},
     zbl = {1162.34343},
     mrnumber = {2148878},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_183_0}
}
Rossi, Riccarda; Savaré, Giuseppe. Existence and approximation results for gradient flows. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 183-196. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_183_0/

[1] Almgren, F. - Taylor, J.E. - Wang, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, n. 2, 1993, 387-438. | MR 1205983 | Zbl 0783.35002

[2] Ambrosio, L., Minimizing Movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19, n. 5, 1995, 191-246. | MR 1387558 | Zbl 0957.49029

[3] Ambrosio, L. - Gigli, N. - Savaré, G., Gradient Flows. Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel. To appear.

[4] Baiocchi, C., Discretization of evolution variational inequalities. In: F. Colombini - A. Marino - L. Modica - S. Spagnolo (eds.), Partial differential equations and the calculus of variations. Vol I, Birkäuser, Boston 1989, 59-62. | MR 1034002 | Zbl 0677.65068

[5] Bressan, A. - Cellina, A. - Colombo, G., Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc., 106, n. 3, 1989, 771-775. | MR 969314 | Zbl 0698.34014

[6] Brezis, H., On some degenerate nonlinear parabolic equations. Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Amer. Math. Soc., Providence, R.I., 1970, 28-38. | MR 273468 | Zbl 0231.47034

[7] Brezis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison1971, Academic Press, New York1971, 101-156. | MR 394323 | Zbl 0278.47033

[8] Brezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Stud., No. 5, North-Holland, Amsterdam1973. | MR 348562 | Zbl 0252.47055

[9] Caginalp, G., An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal., 92, 1986, 205-245. | MR 816623 | Zbl 0608.35080

[10] Caginalp, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A (3), 39, n. 11, 1989, 5887-5896. | MR 998924 | Zbl 1027.80505

[11] Crandall, M.G. - Liggett, T.M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. | MR 287357 | Zbl 0226.47038

[12] Crandall, M.G. - Pazy, A., Semigroups of nonlinear contractions and dissipative sets. J. Functional Analysis, 3, 1969, 376-418. | MR 243383 | Zbl 0182.18903

[13] De Giorgi, E. - Marino, A. - Tosques, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. | MR 636814 | Zbl 0465.47041

[14] De Giorgi, E., New problems on minimizing movements. In: C. Baiocchi - J.-L. Lions (eds.), Boundary Value Problems for PDE and Applications. Masson, 1993, 81-98. | MR 1260440 | Zbl 0851.35052

[15] Jordan, R. - Kinderlehrer, D. - Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, n. 1, 1998, 1-17. | MR 1617171 | Zbl 0915.35120

[16] Komura, Y., Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 1967, 493-507. | MR 216342 | Zbl 0163.38302

[17] Levitas, V.I. - Mielke, A. - Theil, F., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal., 162, n. 2, 2002, 137-177. | MR 1897379 | Zbl 1012.74054

[18] Luckhaus, S., Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. European J. Appl. Math., 1, n. 2, 1990, 101-111. | MR 1117346 | Zbl 0734.35159

[19] Marino, A. - Saccon, C. - Tosques, M., Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16, n. 2, 1989, 281-330. | MR 1041899 | Zbl 0699.49015

[20] Modica, L., Gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1986, 123-142. | MR 866718 | Zbl 0616.76004

[21] Modica, L. - Mortola, S., Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B, 14, 1977, 285-299. | MR 445362 | Zbl 0356.49008

[22] Nochetto, R. - Savaré, G. - Verdi, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, n. 5, 2000, 525-589. | MR 1737503 | Zbl 1021.65047

[23] Plotnikov, P.I. - Starovoitov, V.N., The Stefan problem with surface tension as the limit of a phase field model. Differential Equations, 29, 1993, 395-404. | MR 1236334 | Zbl 0802.35165

[24] Rossi, R. - Savaré, G., Gradient flows of non convex functionals in Hilbert spaces and applications. Preprint IMATI-CNR, n. 7-PV, 2004, 1-45. | Zbl 1116.34048

[25] Rulla, J., Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal., 33, n. 1, 1996, 68-87. | MR 1377244 | Zbl 0855.65102

[26] Savaré, G., Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl., 6, n. 2, 1996, 377-418. | MR 1411975 | Zbl 0858.35073

[27] Schätzle, R., The quasistationary phase field equations with Neumann boundary conditions. J. Differential Equations, 162, n. 2, 2000, 473-503. | MR 1751714 | Zbl 0963.35188

[28] Visintin, A., Stefan problem with phase relaxation. IMA J. Appl. Math., 34, n. 3, 1985, 225-245. | MR 804824 | Zbl 0585.35053

[29] Visintin, A., Models of Phase Transitions. Birkhäuser, Boston1996. | MR 1423808 | Zbl 0882.35004