Sets of finite perimeter associated with vector fields and polyhedral approximation
Montefalcone, Francescopaolo
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 279-295 / Harvested from Biblioteca Digitale Italiana di Matematica

Let X=X1,,Xm be a family of bounded Lipschitz continuous vector fields on Rn. In this paper we prove that if E is a set of finite X-perimeter then his X-perimeter is the limit of the X-perimeters of a sequence of euclidean polyhedra approximating E in L1-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.

Sia data in Rn una m-upla X=X1,,Xm di campi vettoriali lipschitziani e limitati. In questo lavoro dimostriamo che se E è un insieme di X-perimetro finito allora l’X-perimetro di E è il limite degli X-perimetri di una successione di poliedrali euclidee approssimanti E in norma L1. Questo risultato estende alle geometrie di tipo Carnot-Carathéodory un classico teorema di E. De Giorgi.

Publié le : 2003-12-01
@article{RLIN_2003_9_14_4_279_0,
     author = {Francescopaolo Montefalcone},
     title = {Sets of finite perimeter associated with vector fields and polyhedral approximation},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {279-295},
     zbl = {1072.49031},
     mrnumber = {2104216},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_4_279_0}
}
Montefalcone, Francescopaolo. Sets of finite perimeter associated with vector fields and polyhedral approximation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 279-295. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_4_279_0/

[1] Ambrosio, L., Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. | MR 1823840 | Zbl 1002.28004

[2] Ambrosio, L. - Fusco, N. - Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000. | MR 1857292 | Zbl 0957.49001

[3] Ambrosio, L. - Kirchheim, B., Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. | MR 1800768 | Zbl 0966.28002

[4] Ambrosio, L. - Kirchheim, B., Current in metric spaces. Acta Math., 185, 2000, 1-80. | MR 1794185 | Zbl 0984.49025

[5] Biroli, M. - Mosco, U., Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. | MR 1354886 | Zbl 0833.46020

[6] Caccioppoli, R., Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. | MR 47118 | Zbl 0048.03704

[7] Capogna, L. - Danielli, D. - Garofalo, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. | MR 1312686 | Zbl 0864.46018

[8] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. | MR 1708448 | Zbl 0942.58018

[9] David, G. - Semmes, S., Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997. | MR 1616732 | Zbl 0887.54001

[10] De Giorgi, E., Su una teoria generale della misura r-1-dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. | MR 62214 | Zbl 0055.28504

[11] De Giorgi, E., Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995.

[12] De Giorgi, E., Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: M. Chicco et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova 1994, 67-71.

[13] Federer, H., Geometric Measure Theory. Springer-Verlag, New York1969. | MR 257325 | Zbl 0874.49001

[14] Franchi, B. - Gallot, S. - Wheeden, R.L., Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | MR 1314734 | Zbl 0830.46027

[15] Franchi, B. - Lu, G. - Wheeden, R.L., Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. | MR 1343563 | Zbl 0820.46026

[16] Franchi, B. - Serapioni, R. - Serra Cassano, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. | MR 1437714 | Zbl 0876.49014

[17] Franchi, B. - Serapioni, R. - Serra Cassano, F., Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. | MR 1871966 | Zbl 1057.49032

[18] Garofalo, N. - Nhieu, D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | MR 1404326 | Zbl 0880.35032

[19] Giusti, E., Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston1985. | MR 775682 | Zbl 0545.49018

[20] Gromov, M., Carnot-Carathéodory spaces seen from within. In: A. Bellaïche - J.-J. Risler (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel 1996, 79-323. | MR 1421823 | Zbl 0864.53025

[21] Miranda Jr, M., Functions of bounded variations on good metric spaces. Forhcoming 2000. | Zbl 1109.46030

[22] Monti, R. - Serra Cassano, F., Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. | MR 1865002 | Zbl 1032.49045

[23] Preiss, D. - Tisêr, J., On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. | Zbl 0762.28003