Let be a family of bounded Lipschitz continuous vector fields on . In this paper we prove that if is a set of finite -perimeter then his -perimeter is the limit of the -perimeters of a sequence of euclidean polyhedra approximating in -norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.
Sia data in una m-upla di campi vettoriali lipschitziani e limitati. In questo lavoro dimostriamo che se è un insieme di -perimetro finito allora l’-perimetro di è il limite degli -perimetri di una successione di poliedrali euclidee approssimanti in norma . Questo risultato estende alle geometrie di tipo Carnot-Carathéodory un classico teorema di E. De Giorgi.
@article{RLIN_2003_9_14_4_279_0, author = {Francescopaolo Montefalcone}, title = {Sets of finite perimeter associated with vector fields and polyhedral approximation}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {14}, year = {2003}, pages = {279-295}, zbl = {1072.49031}, mrnumber = {2104216}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_4_279_0} }
Montefalcone, Francescopaolo. Sets of finite perimeter associated with vector fields and polyhedral approximation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 279-295. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_4_279_0/
[1] Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. | MR 1823840 | Zbl 1002.28004
,[2] | MR 1857292 | Zbl 0957.49001
- - , Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000.[3] Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. | MR 1800768 | Zbl 0966.28002
- ,[4] Current in metric spaces. Acta Math., 185, 2000, 1-80. | MR 1794185 | Zbl 0984.49025
- ,[5] Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. | MR 1354886 | Zbl 0833.46020
- ,[6] Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. | MR 47118 | Zbl 0048.03704
,[7] The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. | MR 1312686 | Zbl 0864.46018
- - ,[8] Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. | MR 1708448 | Zbl 0942.58018
,[9] | MR 1616732 | Zbl 0887.54001
- , Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997.[10] Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. | MR 62214 | Zbl 0055.28504
,[11] Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995.
,[12] Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova 1994, 67-71.
,[13] | MR 257325 | Zbl 0874.49001
, Geometric Measure Theory. Springer-Verlag, New York1969.[14] Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | MR 1314734 | Zbl 0830.46027
- - ,[15] Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. | MR 1343563 | Zbl 0820.46026
- - ,[16] Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. | MR 1437714 | Zbl 0876.49014
- - ,[17] Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. | MR 1871966 | Zbl 1057.49032
- - ,[18] Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | MR 1404326 | Zbl 0880.35032
- ,[19] | MR 775682 | Zbl 0545.49018
, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston1985.[20] Carnot-Carathéodory spaces seen from within. In: - (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel 1996, 79-323. | MR 1421823 | Zbl 0864.53025
,[21] Functions of bounded variations on good metric spaces. Forhcoming 2000. | Zbl 1109.46030
,[22] Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. | MR 1865002 | Zbl 1032.49045
- ,[23] On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. | Zbl 0762.28003
- ,