We study the behaviour of the absolute Weil height of algebraic numbers in certain infinite extensions of . In particular, we obtain a Northcott type property for infinite abelian extensions of finite exponent and also a Bogomolov type property for certain fields which are a -adic analog of totally real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in the archimedean case.
In questa Nota si studia il comportamento dell’altezza di numeri algebrici in certe estensioni infinite dei numeri razionali. In particolare, si ottengono l’estensione della proprietà di Northcott ad estensioni abeliane infinite ma di esponente finito, e l’estensione della proprietà di Bogomolov a corpi che sono l’analogo -adico del corpo dei numeri algebrici totalmente reali. In questo modo, si ricava anche un analogo non-archimedeo del teorema di distribuzione uniforme dei coniugati di Galois, ottenuto da Bilu nel caso archimedeo.
@article{RLIN_2001_9_12_1_5_0, author = {Enrico Bombieri and Umberto Zannier}, title = {A Note on heights in certain infinite extensions of $\mathbb{Q}$}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {12}, year = {2001}, pages = {5-14}, zbl = {1072.11077}, mrnumber = {1898444}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_1_5_0} }
Bombieri, Enrico; Zannier, Umberto. A Note on heights in certain infinite extensions of $\mathbb{Q}$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 5-14. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_1_5_0/
[1] A lower bound for the height in abelian extensions. J. Number Th., 80, 2000, 260-272. | MR 1740514 | Zbl 0973.11092
- ,[2] A relative Dobrowolski’s lower bound over abelian extensions. Preprint 1999; Annali Sc. Norm. Sup. Pisa, to appear. | Zbl 1016.11026
- ,[3] Limit distribution of small points on algebraic tori. Duke Math. J., 89, 1997, 465-476. | MR 1470340 | Zbl 0918.11035
,[4] | MR 197234 | Zbl 0712.00001
, Algebra. 3rd ed., Addison-Wesley, 1994, xv + 912 pp.[5] An inequality for the discriminant of a polynomial. Michigan Math. J., 11, 1964, 257-262. | MR 166188 | Zbl 0135.01702
,[6] | MR 1055830 | Zbl 0717.11045
, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers & Springer-Verlag, Warszawa1990, xiv + 746 pp.[7] An inequality on the theory of arithmetic on algebraic varieties. Proc. Cambridge Philos. Soc., 45, 1949, 502-509. | MR 33094 | Zbl 0035.30701
,[8] On Bilu’s equidistribution theorem. In: Spectral problems in geometry and arithmetic (Iowa City IA 1997). Contemp. Math., 237, AMS, Providence, RI1999, 159-166. | MR 1710794 | Zbl 1029.11030
,[9] On the product of the conjugates outside the unit circle of an algebraic number. Acta Arith., 24, 1973, 385-399. Addendum ibidem, 26, 1973, 329-361. | MR 360515 | Zbl 0275.12004
,[10] On the measure of totally real algebraic numbers. (I). J. Austral. Math. Soc., Ser. A, 30, 1980-81, 137-149. | MR 607924 | Zbl 0457.12001
,[11] On the measure of totally real algebraic numbers. (II). Math. Comp., 37, 1981, 205-208. | MR 616373 | Zbl 0475.12001
,