Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.
Con motivazione dalla nozione di Seshadri-ampiezza discussa in [11], si congettura che il genere e il grado di un'intersezione completa insiemistica liscia soddisfino un'opportuna diseguaglianza. La congettura è verificata per varie classi di intersezioni complete insiemistiche.
@article{RLIN_1996_9_7_1_41_0, author = {Roberto Paoletti}, title = {Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \)}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {41-46}, zbl = {0882.14015}, mrnumber = {1437650}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_1_41_0} }
Paoletti, Roberto. Some remarks on Set-theoretic Intersection Curves in \( \mathbb{P}^{3} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 41-46. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_1_41_0/
[1] Kummer surfaces associated with the Mumford-Horrocks bundle. In: (éd.), Journées de Géométrie Algébrique d'Angers (Angers, 1979). Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 29-48. | MR 605335 | Zbl 0448.14007
,[2] Babbage's conjecture, contact of surfaces, symmetric determinental varieties and applications. Inv. Math., 63, 1981, 433-466. | MR 620679 | Zbl 0472.14024
,[3] Canonical Surfaces with and . Duke Math. J., 48, 1981, 121-157. | MR 610180 | Zbl 0468.14011
,[4] | MR 732620 | Zbl 0885.14002
, Intersection Theory. Springer-Verlag, 1984.[5] Positive polynomials for ample vector bundles. Ann. Math., 118, 1983, 35-60. | MR 707160 | Zbl 0537.14009
- ,[6] Affine open subsets of algebraic varieties and ample divisors. Ann. Math., 89, 1969, 160-183. | MR 242843 | Zbl 0159.50504
,[7] Complete intersections in characteristic . Am. J. Math., 101, 1979, 380-383. | MR 527998 | Zbl 0418.14027
,[8] Smooth curves on a cone which pass through its vertex. Manuscripta Mathematica, 73, 1991, 187-205. | MR 1128687 | Zbl 0779.14019
,[9] Formules pour les trisécantes des surfaces algébriques. L'Enseign. Math., 33, 1987, 1-66. | MR 896383 | Zbl 0629.14037
,[10] 56, Birkhäuser, Boston 1985. | MR 561910 | Zbl 0438.32016
- - , Vector bundles on complex projective spaces. Progr. in Math., vol.[11] Seshadri positive curves in a smooth projective 3-fold. Rend. Mat. Acc. Lincei, s. 9, v. 6, 1995, 259-274. | MR 1382710 | Zbl 0874.14018
,[12] Liaison des variétés algébriques. Inv. Math., 26, 1974, 271-302. | MR 364271 | Zbl 0298.14022
- ,[13] On self-linked curves. Duke Math. J., 49, 1982, 251-273. | MR 659940 | Zbl 0499.14014
,