The existence of solutions with prescribed period for a class of Hamiltonian systems with a Keplerian singularity is discussed.
Viene discussa l'esistenza di soluzioni di periodo assegnato per una classe di sistemi Hamiltoniani con singolarità di tipo Kepleriano.
@article{RLINA_1989_8_83_1_129_0, author = {Antonio Ambrosetti and Ivar Ekeland}, title = {Perturbation results for a class of singular Hamiltonian systems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {129-132}, zbl = {0742.58047}, mrnumber = {1142450}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_129_0} }
Ambrosetti, Antonio; Ekeland, Ivar. Perturbation results for a class of singular Hamiltonian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 129-132. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_129_0/
[1] Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura Appl., 149: 237-259. | MR 932787 | Zbl 0642.58017
and , 1987.[2] Perturbation of Hamiltonian systems with Keplerian potentials. Math. Zeit., 201: 227-242. | MR 997224 | Zbl 0653.34032
and , 1989.[3] Symmetry breaking in Hamiltonian systems. Jour. Diff. Equat., 67: 165-184. | MR 879691 | Zbl 0606.58043
, and , 1987.[4] Periodic solutions for a class of Hamiltonian Systems with singularities. Proc. Royal Soc. Edinburgh, to appear. | MR 1051602
and , Nov. 1988.[5] A minimax method for a class of Hamiltonian systems with singular potentials. CMS Tech. Summary Report n. 88-8. | MR 987301
and , Oct. 87.[6] Periodic solutions of dynamical systems with Newtonian type potentials. Atti Acc. Naz. Lincei, 81: 271-278. | MR 999819 | Zbl 0667.70010
, and , 1987.[7] Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. TMA, 12: 259-270. | MR 928560
, 1988.