In this paper we consider a nonlinear elliptic equation with critical growth for the operator in a bounded domain . We state some existence results when . Moreover, we consider , expecially when is a ball in .
In questa nota si studia un'equazione ellittica non lineare a crescita critica per l'operatore in un aperto limitato . Vengono enunciati alcuni teoremi di esistenza di soluzioni non banali per questa equazione quando . Si considerano, inoltre, le dimensioni , con particolare riguardo al caso in cui è una sfera di .
@article{RLINA_1989_8_83_1_115_0, author = {David E. Edmunds and Donato Fortunato and Enrico Jannelli}, title = {Fourth-order nonlinear elliptic equations with critical growth}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {115-119}, zbl = {0749.35012}, mrnumber = {1142448}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_115_0} }
Edmunds, David E.; Fortunato, Donato; Jannelli, Enrico. Fourth-order nonlinear elliptic equations with critical growth. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 115-119. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_115_0/
[1] Positive solutions of non-linear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math. 8: 437-477. | MR 709644 | Zbl 0541.35029
and , 1983.[2] An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré, 2: 463-470. | MR 831041 | Zbl 0612.35053
, and , 1985.[3] Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, 1: 341-350. | MR 779872 | Zbl 0568.35039
, and , 1984.[5] The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part 1. Revista Math. Iberoamericana, 1: 145-201. | MR 834360 | Zbl 0704.49005
, 1985.[6] Isoperimetric Inequalities in Mathematical Physics. Princeton. | MR 43486 | Zbl 0044.38301
and , 1951.[7] A General Variational Identity. Indiana Univ. Math. J., 35: 681-703. | MR 855181 | Zbl 0625.35027
and , 1986.[8] Critical exponents and critical dimensions for polyharmonic operators, to appear. | MR 1054124 | Zbl 0717.35032
and .