Local Discontinuous Galerkin methods for fractional diffusion equations
Deng, W. H. ; Hesthaven, J. S.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013), p. 1845-1864 / Harvested from Numdam

We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence 𝒪(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion (β = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.

Publié le : 2013-01-01
DOI : https://doi.org/10.1051/m2an/2013091
Classification:  35R11,  65M60,  65M12
@article{M2AN_2013__47_6_1845_0,
     author = {Deng, W. H. and Hesthaven, J. S.},
     title = {Local Discontinuous Galerkin methods for fractional diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {47},
     year = {2013},
     pages = {1845-1864},
     doi = {10.1051/m2an/2013091},
     mrnumber = {3123379},
     zbl = {1282.35400},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2013__47_6_1845_0}
}
Deng, W. H.; Hesthaven, J. S. Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) pp. 1845-1864. doi : 10.1051/m2an/2013091. http://gdmltest.u-ga.fr/item/M2AN_2013__47_6_1845_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 1098.46001

[2] E. Barkai, Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E. 63 (2001) 046118.

[3] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267-279. | MR 1433934 | Zbl 0871.76040

[4] P.L. Butzer and U. Westphal, An Introduction to Fractional Calculus. World Scientific, Singapore (2000). | MR 1890105 | Zbl 0987.26005

[5] C.-M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227 (2007) 886-897. | MR 2442379 | Zbl 1165.65053

[6] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | MR 1655854 | Zbl 0927.65118

[7] P. Castillo, B. Cockburn, D. Schötzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problem. Math. Comput. 71 (2001) 455-478. | MR 1885610 | Zbl 0997.65111

[8] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1975). | MR 520174 | Zbl 0383.65058

[9] W.H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227 (2007) 1510-1522. | MR 2442403 | Zbl pre05221351

[10] W.H. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008) 204-226. | MR 2452858 | Zbl pre05686546

[11] V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Eqs. 22 (2005) 558-576. | MR 2212226 | Zbl 1095.65118

[12] J.S. Hesthaven and T. Warburton, High-order nodal discontinuous Galerkin methods for Maxwell eigenvalue problem. Roy. Soc. London Ser. A 362 (2004) 493-524. | MR 2075904 | Zbl 1078.78014

[13] J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer-Verlag, New York, USA (2008). | MR 2372235 | Zbl 1134.65068

[14] X. Ji and H. Tang, High-order accurate Runge-Kutta (Local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations. Numer. Math. Theor. Meth. Appl. 5 (2012) 333-358. | MR 2948767 | Zbl 1274.65271

[15] C.P. Li and W.H. Deng, Remarks on fractional derivatives. Appl. Math. Comput. 187 (2007) 777-784. | MR 2323083 | Zbl 1125.26009

[16] X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108-2131. | MR 2519596 | Zbl 1193.35243

[17] Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533-1552. | MR 2349193 | Zbl 1126.65121

[18] W. Mclean and K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52 (2009) 69-88. | MR 2533995 | Zbl 1177.65194

[19] K. Mustapha and W. Mclean, Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78 (2009) 1975-1995. | MR 2521275 | Zbl 1198.65195

[20] K. Mustapha and W. Mclean, Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56 (2011) 159-184. | MR 2755668 | Zbl 1211.65127

[21] K. Mustapha and W. Mclean, Superconvergence of a discontinuous Galerkin method for the fractional diffusion and wave equation, arXiv:1206.2686v1 (2012). | MR 3033020 | Zbl 1267.26005

[22] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1-77. | MR 1809268 | Zbl 0984.82032

[23] C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813-823. | MR 2284325 | Zbl 1113.65124

[24] J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769-791. | MR 1921677 | Zbl 1021.65050